基于花状铂纳米颗粒构建的电致化学发光免疫传感器用于检测载脂蛋白A1
收稿日期: 2015-09-14
修回日期: 2015-11-10
网络出版日期: 2015-11-18
基金资助
国家自然科学基金项目(No. 21575116)资助
Electrochemiluminescence Immunosensor Based on Platinum Nanoparticles for the Determination of Apolipoprotein A1
Received date: 2015-09-14
Revised date: 2015-11-10
Online published: 2015-11-18
采用一锅合成法制备了新型的具有大比表面积的花状铂纳米颗粒(PtNFs),并构建了一个高灵敏电致化学发光(ECL)免疫传感器用于检测载脂蛋白A1(Apo-A1). 该PtNFs用于吸附二抗(anti-Apo-A1),并用葡糖糖氧化酶(GOD)封闭其表面的非特异性位点,最终制备了PtNFs@anti-Apo-A1@GOD信号探针. 当Apo-A1存在时,通过夹心免疫反应将制备的信号探针捕获于电极表面,并将所制得的电极置于含有葡萄糖的过硫酸根底液中检测. GOD催化葡萄糖产生H2O2,H2O2在PtNFs的催化下分解并在电极表面原位产生O2,所产生的O2能够催化过硫酸根-氧气体系的电致化学发光反应,放大发光信号,提高检测灵敏度. 该传感器在0.1 ng•mL-1 ~ 100 ng•mL-1范围内对Apo-A1有良好的线性响应,检测下限达到0.03 ng•mL-1,有望应用于临床分析诊断.
关键词: 花状铂纳米颗粒; 电致化学发光免疫传感器; 载脂蛋白A1
廖 妮 , 卓 颖 , 袁 若 . 基于花状铂纳米颗粒构建的电致化学发光免疫传感器用于检测载脂蛋白A1[J]. 电化学, 2016 , 22(3) : 299 -305 . DOI: 10.13208/j.electrochem.150914
In this paper, a novel electrochemiluminescence (ECL) immunosensor for the detection of apolipoprotein A1 was constructed based on flower-like platinum nanoparticles (PtNFs) via a one-pot chemical synthesis method. The PtNFs was used to immobilize the secondary antibody and enzyme (GOD). Then the prepared bioconjugates were introduced onto the electrode via sandwich immunoreactions. Accordingly, the ECL luminophore peroxydisulfate (S2O82- ) was presented in the working buffer solution containing an appropriate amount of glucose. Through the ECL responses of S2O82- and O2, a dramatically amplified ECL signal was obtained for the reason that hydrogen peroxide (H2O2) produced by GOD to glucose was subsequently catalyzed by PtNFs to in situ generate O2. The present immunosensor showed a wide linear range of 0.1 ng•mL-1 to 100 ng•mL-1, with a low detection limit of 0.03 ng•mL-1 for detecting Apo-A1. This new signal amplification strategy for preparation of ECL immunosensor could be easily realized and has potential application in ultrasensitive bioassays.
[1] Zhang Z T, Pak J, Huang H Y, et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation[J]. Oncogene, 2001, 20(12): 1973-1980.
[2] Chen Y T, Chen C L, Chen H W, et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology[J]. Journal of Proteome Research, 2010, 9(11): 5803-5815.
[3] Li C Y, Li H J, Li J M, et al. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis[J]. Biochemical and Biophysical Research Communications, 2014, 4(446): 1047-1052.
[4] Li H J, Li C Y, Wu H L, et al. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma[J]. Proteome Science, 2011, 9: 21-23.
[5] Wu Y, Shi H, Yuan L. A novel electrochemiluminescence immunosensor via polymerization-assisted amplification[J]. Chemical Communications, 2010, 46(41): 7763-7765.
[6] Zanarini S, Rampazzo E, Ciana L D. Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification[J]. Journal of the American Chemical Society, 2009, 131(6): 2260-2267.
[7] Chen Z H, Liu Y, Wang Y Z, et al. Dynamic evaluation of cell surface N-Glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-Integrating gold-nanoparticle-modified Ru(bpy)32+-Doped silica nanoprobe[J]. Analytical Chemistry, 2013, 85(9): 4431-4438.
[8] Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chemical Society Reviews, 2010, 39(8): 3275-3304.
[9] Chen X M, Wu G H, Chen J M, et al. A novel electrochemiluminescence sensor based on bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide[J]. Biosensors and Bioelectronics, 2010, 26(2): 872-876.
[10] Tang D and Ren J. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels[J]. Analytical Chemistry, 2008, 80(21): 8064-8070.
[11] Jian H and Ju H. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates[J]. Chemical Communications, 2007: 404-406.
[12] Liu X, Ju H. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle[J]. Analytical Chemistry, 2008, 80(14): 5377-5382.
[13] Liu X, Zhang Y, Lei J. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction[J]. Analytical Chemistry, 2010, 82(17): 7351-7356.
[14] Qiu B, Lin Z, Wang J. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode[J]. Talanta, 2009, 78(1): 76-80.
[15] Liu X, Niu W, Li H. Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network[J]. Electrochemistry Communications, 2008, 10(9): 1250-1253.
[16] Zhuo Y, Yuan P, Yuan R, et al. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors[J]. Biomaterials, 2009, 30(12): 2284-2290.
[17] Niu H, Yuan R, Chai Y, et al. Electrochemiluminescence of peroxydisulfate enhanced by L-Cysteine film for sensitive immunoassay[J]. Biosensors and Bioelectronics, 2011, 26(7): 3175-3180.
[18] Lei Y M, Huang W X, Yuan R, et al. Electrochemiluminescence resonance energy transfer system: Mechanism and application in ratiometric aptasensor for lead ion[J]. Analytical Chemistry, 2015, 87(15): 7787-7794.
[19] Lv X H, Pang X H, Li Y Y, et al. Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe nanoneedles loaded with polypyrrole intercalated graphene for detection of CA72-4[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 867-872.
/
〈 |
|
〉 |