Ag+掺杂聚苯胺的制备及其电容特性研究
收稿日期: 2015-10-28
修回日期: 2015-11-26
网络出版日期: 2015-12-01
基金资助
国家自然科学基金项目(No. 51503092)资助
Improving the Electrochemical Properties of Polyaniline by Doping with Silver Ions
Received date: 2015-10-28
Revised date: 2015-11-26
Online published: 2015-12-01
以苯胺为单体,采用界面聚合法合成了不同浓度的Ag+掺杂的聚苯胺(PANI/Ag+),使用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)和场发射扫描电镜(SEM)等手段对其结构和形貌进行了分析和表征. 在0.5 mol•L-1 Na2SO4电解液中,通过循环伏安(CV)、恒流充放电(CP)以及电化学阻抗(EIS)等技术研究了其电化学性能. 结果表明,当电流密度为5 mA•cm-2时,PANI/0.12 mol•L-1 Ag+的比电容达529 F•g-1,循环1000次后比电容保持51%,相对于无Ag+掺杂的PANI,表现出更优良的电化学电容特性.
徐 惠* , 蒲金娟 , 陈 泳 , 刘 健 . Ag+掺杂聚苯胺的制备及其电容特性研究[J]. 电化学, 2016 , 22(1) : 64 -69 . DOI: 10.13208/j.electrochem.151029
Polyaniline (PANI) is an attractive candidate among the various conductive polymers based on its unique doping/de-doping behavior, intrinsic electrical conductivity, facile synthesis, and environmental stability. However, the poor conductivity and cycle stability in an acid medium have restricted its applications. Our work aims at solving the above problems effectively by doping silver ions into PANI. The PANI and PANI doped with silver ions (PANI/Ag+) were synthesized by a facile interfacial polymerization process, which used aniline as a starting material in toluene in contact with an aqueous solution of silver nitrate varied from 0.04 mol•L-1 to 0.20 mol•L-1. The as-synthesized PANI and PANI/Ag+ were subjected to the physico-chemical characterization by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical behaviors of the polymers were studied by cyclic voltammetry (CV), galvanostatic charge-discharge test (CP) and electrochemical impedance spectroscopy (EIS) in 0.5 mol•L-1 Na2SO4 electrolyte. It turned out that the PANI/0.12 mol•L-1 Ag+ showed larger specific capacitance of 529 F•g-1 and better specific capacitance retention of 51% after 1000 cycles at a current density of 5 mA•cm-2 compared with those of PANI. The results indicated that the PANI/Ag+ is a promising electrode material for supercapacitors.
Key words: polyaniline; silver ions; specific capacitance; doping
[1] Malinauskas A. Electrocatalysis at conducting polymers[J]. Synthetic Metals, 1999, 107(2): 75-83.
[2] Dhibar S, Sahoo S, Das C K, et al. Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications[J]. Journal of Materials Science-Materials in Electronics, 2013, 24(2): 576-585.
[3] Patil D S, Shaikh J S, Dalavi D S, et al. An Mn doped polyaniline electrode for electrochemical supercapacitor[J]. Journal of the Electrochemical Society, 2011, 158(6): A653-A657.
[4] Li J, Cui M, Lai Y Q, et al. Investigation of polyaniline co-doped with Zn2+ and H+ as the electrode material for electrochemical supercapacitors[J]. Synthetic Metals, 2010, 160(11/12): 1228-1233.
[5] Patil D S, Shaikh J S, Pawar S A, et al. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors[J]. Physical Chemistry Chemical Physics, 2012, 14(34): 11886-11895.
[6] Xu H, Wu J X, Li C L, et al. Investigation of polyaniline films doped with Fe3+ as the electrode material for electrochemical supercapacitors[J]. Electrochimica Acta, 2015, 165: 14-21.
[7] Moon Y B, Cao Y, Smith P, et al. X-ray scattering from crystalline polyaniline[J]. Polymer communications, 1989, 30(7): 196-199.
[8] Kim Y H, Foster C, Chiang J, et al. Localized charged excitations in polyaniline: Infrared photoexcitation and protonation studies[J]. Synthetic Metals, 1989, 29(1): 285-290.
[9] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3): 771-778.
[10] Pouget J P, Jozefowicz M E, Epstein A J, et al. X-ray structure of polyaniline[J]. Macromolecules, 1991, 24(3): 779-789.
[11] Li R Q, Chen Z, Li J Q, et al. Effective synthesis to control the growth of polyaniline nanofibers by interfacial polymerization[J]. Synthetic Metals, 2013, 171: 39-44.
[12] Yang C M, Chen C Y. Synthesis, characterisation and properties of polyanilines containing transition metal ions[J]. Synthetic Metals, 2005, 153(1/3): 133-136.
[13] Tan Y T(谭永涛), Ran F(冉奋),Wang L R(王翎任), et al. Electrochemical capacitive performance of polyaniline electrode with different electrolytes[J]. Journal of Electrochemistry(电化学), 2011, 17(1): 88-92.
[14] Xu H(徐惠), Zhang J L(张俊龙), Chen Y(陈泳), et al. Preparation and electrochemical performance of polyaniline doped with Mn2+[J]. Journal of Functional Materials(功能材料), 2014, 7(7): 7047-7050.
[15] Chen S A, Lin L C. Polyaniline doped by the new class of dopant, ionic salt-structure and properties[J]. Macromolecules, 1995, 28(4): 1239-1245.
[16] Li X X. Improving the electrochemical properties of polyaniline by co-doping with titanium ions and protonic acid[J]. Electrochimica Acta, 2009, 54(24): 5634-5639.
/
〈 |
|
〉 |