欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

银表面罗丹明6G的电化学表面增强拉曼光谱研究

  • 陈婵娟 ,
  • 宗 铖 ,
  • 刘国坤 ,
  • 任 斌*
展开
  • 1. 固体表面物理化学国家重点实验室,厦门大学化学化工学院,福建 厦门 361005;2. 近海海洋环境科学国家重点实验室,厦门大学环境与生态学院,福建 厦门 361102
任 斌

收稿日期: 2015-08-19

  修回日期: 2015-09-28

  网络出版日期: 2015-11-09

基金资助

国家自然科学基金项目(No. 21227004,No. 21321062,No. J1310024,No. 21473140),科技部973项目(No. 2013CB933703,No. 2011YQ03012406)以及教育部创新团队基金(No. IRT13036)资助

Adsorption Behavior of Rhodamine 6G on Silver Surfaces Studied by Electrochemical Surface-Enhanced Raman Spectroscopy

  • CHEN Chan-juan ,
  • ZONG Cheng ,
  • LIU Guo-kun ,
  • REN Bin*
Expand
  • 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China; 2. State Key Laboratory of Marine Environmental Science, College of the Enviroment and Ecology, Xiamen University, Xiamen 361002, Fujian, China
REN Bin

Received date: 2015-08-19

  Revised date: 2015-09-28

  Online published: 2015-11-09

摘要

罗丹明6G(Rhodamine 6G,R6G)是单分子表面增强拉曼光谱(SM-SERS)研究中最常用的探针分子之一,对R6G分子在表面吸附行为的研究有助于了解R6G分子和表面的相互作用. 本文应用电化学和电化学表面增强拉曼光谱技术,研究不同电位下R6G的银电极表面的吸附行为. 结果表明,随着电位负移罗丹明6G在银表面上从垂直吸附转为倾斜吸附,该变化和碱性条件下吸附于金纳米粒子上R6G的吸附构象一致. 这说明,在部分单分子实验中所发现的R6G反常光谱其来源是单个R6G分子在表面吸附取向变化. 本研究对后续详细分析SM-SERS研究中单分子SERS谱峰变化的机制有一定的参考价值.

本文引用格式

陈婵娟 , 宗 铖 , 刘国坤 , 任 斌* . 银表面罗丹明6G的电化学表面增强拉曼光谱研究[J]. 电化学, 2016 , 22(1) : 32 -36 . DOI: 10.13208/j.electrochem.150819

Abstract

Rhodamine 6G (R6G) is one of the most common probe molecules employed in single molecule surface-enhanced Raman spectroscopy (SM-SERS). The study in adsorption behavior of R6G will help understand the interactions between R6G and surface. In this paper, we used electrochemical surface-enhanced Raman spectroscopy (SERS) to study the potential-dependent adsorption behavior of R6G on silver electrodes. Our results show that when the potential moved negatively, the orientation of R6G on silver surface changed from vertical to inclined adsorption. This result indicates that the abnormal SM-SERS spectra of R6G observed in the former SM-SERS studies from other research groups are due to the reorientation of the R6G molecule on the surface rather than the change in resonance effect of R6G. Such a detailed study will assist the understanding for the spectral change of SERS in SM-SERS studies.

参考文献

[1] Schlucker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angewandte Chemie International Edition, 2014, 53(19): 4756-4795.

[2] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[3] Dieringer J A, Lettan R B, Scheidt K A, et al. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2007, 129(51): 16249-16256.

[4] Emory S R, Jensen R A, Wenda T, et al. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS[J]. Faraday discussions, 2006, 132: 249-132.

[5] Bosnick K A, Jiang J, Brus L E. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates[J]. The Journal of Physical Chemistry B, 2002, 106(33): 8096-8099.

[6] Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method[J]. The Journal of Physical Chemistry B, 2003, 107(31): 7607-7617.

[7] Vosgröne T, Meixner A. Surface- and resonance-enhanced micro-raman spectroscopy of xanthene dyes: From the ensemble to single molecules[J]. ChemPhysChem, 2005, 6(1): 154-163.

[8] Šaši? S, Itoh T, Ozaki Y. Detailed analysis of single-molecule surface-enhanced resonance Raman scattering spectra of Rhodamine 6G obtained from isolated nano-aggregates of colloidal silver[J]. Journal of Raman Spectroscopy, 2005, 36(6/7): 593-599.

[9] Hildebrandt P, Stockburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver[J]. The Journal of Physical Chemistry, 1984, 88(24): 5935-5944.

[10] Doering W E, Nie S M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement[J]. The Journal of Physical Chemistry B, 2002, 106(2): 311-317.

[11] Maruyama Y,Futamata M. Anion induced SERS activation and quenching for R6G adsorbed on Ag nanoparticles[J]. Chemical Physics Letters, 2007, 448(1): 93-98.

[12] Yajima T, Yu Y, Futamata M. Steric hindrance in cationic and neutral rhodamine 6G molecules adsorbed on Au nanoparticles[J]. Journal of Raman Spectroscopy, 2013, 44(3): 406-411.

[13] Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.

[14] Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55: 197-229.

[15] Otsuka I, Iwasaki T. Chloride ion‐induced large scale reconstruction on an electrochemically roughened Ag electrode[J]. Journal of Vacuum Science & Technology A, 1990, 8(1): 530-533.

[16] Watanabe H, Hayazawa N, Inouye Y, et al. DFT vibrational calculations of rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(11): 5012-5020.

[17] Huang Y F, Zhang M, Zhao L B, et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angewandte Chemie International Edition, 2014, 53(9): 2353-2357.

文章导航

/