二氧化锰含量对活性炭电极电化学性能的影响
网络出版日期: 2015-12-23
基金资助
国家自然科学基金(No. 21103085)及江西省教育厅科技落地计划项目(No. DB201101397)资助
Effect of MnO2 Content on Electrochemical Capacitance Behavior of Active Carbon Electrode
Online published: 2015-12-23
本文采用液相法、热分解MnCO3法以及电解沉积法制备不同二氧化锰粉末,并将其与活性炭复合,应用于水系超级电容器. 使用X射线衍射(XRD)、扫描电子显微镜(SEM)技术对材料形貌进行表征. 使用循环伏安法以及恒流充放电法对其电化学性能进行测试. 实验数据表明,α-MnO2(质量分数70%)掺杂活性炭电极的最大比容量为151 F•g-1,β-MnO2(质量分数60%)掺杂活性炭电极的最大比容量为172 F•g-1,γ-MnO2(质量分数50%)掺杂活性炭电极的最大比容量为141 F•g-1,但二氧化锰粉末对电极内阻的影响呈无规律性.
关键词: 水系非对称超级电容器; 二氧化锰; 活性炭电极
申 昆 , 周贤良 , 段祺舜 . 二氧化锰含量对活性炭电极电化学性能的影响[J]. 电化学, 2015 , 21(6) : 577 -582 . DOI: 10.13208/j.electrochem.150721
In this work, the manganese dioxide (MnO2) materials were prepared by solution approach at low temperature, thermal decomposition and electrochemical deposition. The actived carbon (AC) and MnO2 composite electrodes were used for aqueous supercapacitors. The morphologies and structures of the prepared materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the electrochemical behaviors were tested by cyclic voltammetry (CV) and galanostatic charge-discharge tests. Electrochemical test data show that the maximum specific capacitances of 151, 172 and 141 F•g-1 were obtained with the contents of MnO2 being 70, 60 and 70% in the composites, respectively. However, the influence of MnO2powder on the electrode impedance was not straightforward.
[1] Liu H Y(刘华英). Study on preperation and electrochemical characteristics of MnO2 electrode material for aqueous supercapacitors[D]. NanChang: School of Material Science and Engineering in Nanchang Hangkong University, 2011.
[2] Qi X J(祁晓津), Zhang K L(张康龙) Hu Q L(胡奇林). Research on preparation and performance of activated carbon super-capacitor’s electrode[J]. Contemporary Chemical Industry(当代化工), 2014, 43(12): 2493-2496.
[3] Kang J, Wen J Z, Jayaram S H, et al. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCS) with distinct electrolytes[J]. Electrochimica Acta, 2014, 115: 587-598.
[4] Ran F(冉奋), Liu Y(刘影), Wang L R(王翎任), et al. The effect of reaction temperature on the micro-nano structure and the capacitance properties of cryptomelane-type manganese oxide[J]. Journal of Functional Materials(功能材料), 2015, 46(1): 01055-01060.
[5] Khomenko V, Raymundo-Pińero E, Béguin F. A new type of energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte[J]. Journal of Power Sources, 2010, 195(13): 4234-4241.
[6] Yuan M R(袁美蓉), Zhao F H(赵方辉), Liu W Q(刘伟强), et al. Preparation and properties of graphene for supercapacitor application[J]. Journal of Power Sources, 2013, 19(44): 2810-2813.
[7] Zhao X(赵雪), Qiu P D(邱平达), Jiang H J(姜海静), et al. Latest research of electrode materials for supercapacitor[J]. Electronic Components and Materials, 2015, 34(1): 4-5.
[8] Hao Y J, Lai Q Y, Wang L, et al. Electrochemical performance of a high cation-deficiency Li2Mn4O9/active carbon supercapacitor in LiNO3 electrolyte[J]. Synthetic Metals, 2010, 160(7/8): 669-674.
[9] Sahoo A, Shrama Y. Synthesis and characterization of nanostructured ternary zinc manganese oxid as novel supercapacitor material[J]. Materials Chemistry and Physics, 2015, 149-150: 721-727.
[10] Su X H(苏小辉), Yu L(余林), Cheng G(程高), et al. Hydrothermally synthesized manganese dioxide film as supercapacitor electrode[J]. Journal of Functional Materials, 2015, 5(29): 18-21.
[11] Wu W L(吴文丽), Liu C L(刘成伦), Xie T P(谢太平). Study on electrodeposition of δ-MnO2 and decoloration performance of methylene blue[J].Technology of Water Treatment, 2014, 12(40): 24-28.
[12] Yang F(杨帆), Wei H(卫华), Chai H(柴卉), et al. Synthesis of nanometer manganese dioxide by solid state reaction and electrochemical performance[J]. Chinese Journal of Power Sources, 2014, 138(11): 2019-2021.
[13] Li S H, Liu Q H, Qi Li, et al. Research progress on manganese dioxide electrode material for electrochemical capacitors[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 339-346.
/
〈 |
|
〉 |