欢迎访问《电化学(中英文)》期刊官方网站,今天是
碳纳米材料电化学近期研究专辑(客座编辑:长春应用化学研究所 陈卫研究员)

碳凝胶/泡沫镍一体化电极用于高性能的超级电容器

  • 吴 中 ,
  • 张新波
展开
  • 1. 中国科学院长春应用化学研究所,稀土国家重点实验室,吉林 长春 130022;2. 中国科学院大学,北京 100049

网络出版日期: 2021-12-17

基金资助

基金委优秀青年基金(No. 21422108)资助

Carbon Aerogel/Nickel Foam as Electrode for High-Performance Supercapacitor

  • WU Zhong ,
  • ZHANG Xin-bo
Expand
  • 1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2021-12-17

摘要

以氧化石墨、间苯二酚、甲醛和泡沫镍为原料,经85 oC水热碳化处理,在泡沫镍表面原位聚合形成了碳凝胶/泡沫镍一体化电极,冷冻干燥处理后可得多孔碳凝胶/泡沫镍一体化电极. 水系和有机系的超级电容器测试表明,多孔碳凝胶/泡沫镍一体化电极具有较高的比容量和良好的循环稳定性,其独特的一体化电极组成和多孔结构有利于电子和电解液离子的有效传输.

本文引用格式

吴 中 , 张新波 . 碳凝胶/泡沫镍一体化电极用于高性能的超级电容器[J]. 电化学, 2015 , 21(6) : 554 -559 . DOI: 10.13208/j.electrochem.150841

Abstract

Herein, a facile synthesis has been explored to prepare carbon aerogel/Ni foam. Graphene oxide, resorcinol and formaldehyde serve as precursors and polymerize in-situ on the Ni foam after hydrothermal synthesis at 85 oC. After lyophilization treatment, the carbon aerogel/Ni foam with porous structure can be obtained. Electrochemical investigations reveal that the carbon aerogel/Ni foam exhibits superior performances in both aqueous and organic electrolytes involving high specific capacitance and long-term cycling stability. The excellent properties can be ascribed to the unique formation and porous structure, which allows more effective transportations of electron and electrolyte ion.

参考文献

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.

[3] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.

[4] Kim J Y, Kim K H, Yoon S B, et al. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications[J]. Nanoscale, 2013, 5(15): 6804-6811.

[5] Shearer C J, Cherevan A, Eder D. Application and future challenges of functional nanocarbon hybrids[J]. Advanced Materials, 2014, 26(15): 2295-2318.

[6] Nishihara H, Kyotani T. Templated nanocarbons for energy storage advanced materials[J]. Advanced Materials, 2012, 24(33): 4473-4498.

[7] Yu G H, Xie X, Pan L J, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy, 2013, 2(2): 213-234.

[8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environment Science, 2014, 7(5): 1597-1614.

[9] Wu Z, Huang X L, Wang Z L, et al. Electrostatic induced stretch growth of homogeneous beta-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors[J]. Scientific Reports, 2014, 4: No. 3669.

[10] Huang Y(黄芸), Wu Z(吴中), Zhang X B(张新波). Template-free synthesis of porous NiO hierarchical structure for high performance supercapacitor[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 146-151.

[11] Naoi K, Naoi W, Aoyagi S, et al. New generation “nanohybrid supercapacitor”[J]. Accounts of Chemical Research, 46(5): 1075-1083.

[12] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(40): 9994-10024.

[13] Chen P, Yang J J, Li S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013 (2): 249-256.

[14] Zhang L, Shi G Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C, 2011, 115(34): 17206-17212.

[15] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small, 2014, 10(17): 3480-3498.

[16] Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS NANO, 2013, 7(5): 4042-4049.

[17] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.

[18] Fang Y, Luo B, Jia Y Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47): 6348-6355.

[19] Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS NANO, 2008, 2(3): 463-470.

[20] Lee J S, Kim S I, Yoon J C, et al. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J]. ACS NANO, 2013, 7(7): 6047-6055.

[21] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS NANO, 2010, 4(8): 4806-4814.

[22] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

[23] Xu Y X, Lin Z Y, Huang X Q, et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials, 2013, 25(40): 5779-5784.

[24] Chen J, Sheng K X, Luo P H, et al. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Advanced Materials, 2012, 24(33): 4569-4573.

[25] Cao X H, Shi Y M, Shi W H, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.

[26] Yuan C Z, Yang L, Hou L R, et al. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors[J]. Energy & Environmental Science, 2012, 5(7): 7883-7887.

[27] Wang Z L, Xu D, Xu J J, et al., Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.

文章导航

/