欢迎访问《电化学(中英文)》期刊官方网站,今天是
碳纳米材料电化学近期研究专辑(客座编辑:长春应用化学研究所 陈卫研究员)

胶体离子超级电容器

  • 陈昆峰 ,
  • 薛冬峰
展开
  • 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,吉林 长春 130022

收稿日期: 2015-08-25

  修回日期: 2015-09-25

  网络出版日期: 2015-11-02

基金资助

国家自然科学基金项目(No. 51125009,No. 91434118)、国家自然科学基金创新研究群体项目(No. 21221061)、中国科学院国际合作局对外合作重点项目(No. 121522KYS820150009)资助

Colloidal Ionic Supercapacitors

  • CHEN Kun-feng ,
  • XUE Dong-feng
Expand
  • State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Received date: 2015-08-25

  Revised date: 2015-09-25

  Online published: 2015-11-02

摘要

超级电容器具有功率密度大、循环寿命长等优点,但同时面临着能量密度低等缺点. 胶体离子超级电容器是最近开发的一种新型赝电容器,同时具有高功率密度和高能量密度的特点. 胶体离子超级电容器能够充分利用多价态金属阳离子的多电子氧化还原反应,完全释放储存的潜在电能,从而提高超级电容器的能量密度. 由于胶体离子的存在,缩短了电子、离子的扩散长度,加快了氧化还原反应动力学,从而保持高的功率密度. 本文主要介绍胶体离子超级电容器的发展过程、最新研究进展以及需要进一步开展的研究工作,作者希望从一个新的角度去研究发展下一代高性能电化学储能设备,实现新的突破.

本文引用格式

陈昆峰 , 薛冬峰 . 胶体离子超级电容器[J]. 电化学, 2015 , 21(6) : 534 -542 . DOI: 10.13208/j.electrochem.150842

Abstract

Supercapacitors have high power density and long cycle life compared with battery systems, but they still suffer from low energy density at the same time. In order to increase the energy density of supercapacitors, we have developed a new type of pseudocapacitor, called colloidal ion supercapacitor, which can directly use commercial metal salts as electrode materials and form electroactive matter by in-situ electrochemical reactions without the need of additional materials synthesis processes. Colloidal ion supercapacitor can fully utilize the redox reaction of metal cations with multiple oxidation states, which can completely release the stored electrical energy of multiple-valence cations, leading to high energy density. Due to the presence of colloidal cation ions in the colloidal ion supercapacitor, the diffusion length of electrons and ions can be shortened, leading to high redox reaction kinetics and high power density. Both high energy density and high power density can exist in one supercapacitor devices, called colloidal ionic supercapacitor. This review outlines the concept, basis and the development of colloidal ion supercapacitors, the latest research progresses and the facing future challenges. We hope that colloidal ion supercapacitor can advance the development of the next generation of high-performance electrochemical energy storage devices.

参考文献

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[2] Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Kluwer-Academic, 1999.

[3] Wu K(吴坤), Xu S Z(许思哲), Zhou X J(周雪姣), et al. Graphene quantum dots enhanced electrochemical performance of polypyrrole as supercapacitor electrode[J]. Journal of Electrochemistry(电化学), 2013, 19(4): 361-370.

[4] Xiao P(肖鹏), Wang D H(王大辉), Lang J W(朗俊伟). Comparison in factors affecting electrochemical properties of thermal-reduced graphene oxide for supercapacitors[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 553-562.

[5] Chen K F(陈昆峰), Xue D F(薛冬峰). Chemical reaction and crystallization control on electrode materials for electrochemical energy storage[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, 45(1): 36-49.

[6] Chen K F(陈昆峰), Yang Y Y(杨阳阳), Chen X(陈旭), et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University (Natural Science)(河南大学学报 自然科学版), 2014, 44(4): 398-415.

[7] Chen K F(陈昆峰), Xue D F(薛冬峰). Rare earth and transitional metal colloidal supercapacitors[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, doi: 10.1007/s11431-015 -5915-z.

[8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.

[9] Becker H E. Low voltage electrolytic capacitor: USA, 2 800 616 (to General Electric)[P]. 1957.

[10] Murphy T C, Wright R B, Sutula R A. Electrochemical capacitors[C]. Delnick F M, Electrochemical Capacitors II, Proceedings, 96-25, New Jersey: The Electrochemical Society, 1997.

[11] Chen K F, Xue D F, Komarneni S. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO[J]. Journal of Power Sources, 2015, 275(1): 136-143.

[12] Chen K F, Sun C T, Xue D F. Morphology engineering of high performance binary oxide electrodes[J]. Physical Chemistry Chemical Physics, 2015, 17(2): 732-750.

[13] Chen K, Song S Y, Liu F, et al. Structural design of graphene for electrochemical energy storage[J]. Chemical Society Reviews, 2015, 44(17): 6230-6257.

[14] Chen K F, Song S Y, Xue D F. Beyond graphene: Materials chemistry toward high performance inorganic functional materials[J]. Journal of Materials Chemistry A, 2015, 3(6): 2441-2453.

[15] Rauda I E, Augustyn V, Dunn B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts of Chemical Research, 2013, 46(5): 1113-1124.

[16] Wang Y G, Xia Y Y. Recent progress in supercapacitors: From materials design to system construction[J]. Advanced Materials, 2013, 25(37): 5336-5342.

[17] Lu Z Y, Chang Z, Zhu W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance[J]. Chemical Communications, 2011, 47(34): 9651-9653.

[18] Kong D S, Wang J M, Shao H B, et al. Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance[J]. Journal of Alloy and Compounds, 2011, 509(18): 5611-5616.

[19] Rakhi R B, Chen W, Cha D Y, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letters, 2012, 12(5): 2559-2567.

[20] Chen K F, Xue D F. Ionic Supercapacitor electrode materials: A system-level design of electrode and electrolyte for transforming ions into colloids[J]. Colloid and Interface Science Communications, 2014, 1(1): 39-42.

[21] Chen K, Song S Y, Xue D F. An ionic aqueous pseudocapacitor system: Electroactive ions in both salt-electrode and redox-electrolyte[J]. RSC Advances, 2014, 4(44): 23338-23343.

[22] Chen K F, Xue D F. Crystallization of tin chloride for promising pseudocapacitor electrode[J]. CrystEngComm, 2014, 16(21): 4610-4618.

[23] Chen K F, Song S Y, Li K Y, et al. Water-soluble inorganic salts with ultrahigh specific capacitance: Crystallization transformation investigation of CuCl2 electrodes[J]. CrystEngComm, 2013, 15(47): 10367-10373.

[24] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176): 1210-1211.

[25] Chen K F, Xue D F. Formation of electroactive colloids via in-situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor[J]. Journal of Colloid and Interface Science, 2014, 430(1): 265-271.

[26] Chen K F, Yang Y Y, Li K Y, et al. CoCl2 designed as excellent pseudocapacitor electrode materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 440-444.

[27] Chen K F, Xue D F. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance[J]. Journal of Colloid and Interface Science, 2014, 424(1): 84-89.

[28] Chen K F, Xue D F. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode[J]. Journal of Colloid and Interface Science, 2014, 416(1): 172-176.

[29] Chen X, Chen K F, Wang H, et al. Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte[J]. Electrochimica Acta, 2014, 147(1): 216-224.

[30] Wei D, Scherer M R J, Bower C, et al. A nanostructured electrochromic supercapacitor[J]. Nano Letters, 2012, 12(4): 1857-1862.

[31] Chen X, Chen K F, Wang H, et al. Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system[J]. CrystEngComm, 2014, 16(29): 6707-6715.

[32] Chen X, Chen K F, Wang H, et al. A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system[J]. Journal of Colloid and Interface Science, 2015, 444(1): 49-57.

[33] Chen K F, Yin S, Xue D F. Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: Formation of electroactive colloids via in-situ electric field assisted coprecipitation[J]. Nanoscale, 2015, 7(3): 1161-1166.

[34] Chen K F, Xue D F, Komarneni S. Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition[J]. Journal of Power Sources, 2015, 279(1): 365-371.

[35] Chen K F, Xue D F. Searching for electrode materials with high electrochemical reactivity[J]. Journal of Materiomics, 2015, doi: 10.1016/j.jmat.2015.07.001.

[36] Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states[J]. Journal of Physical Chemistry A, 2006, 110(39): 11332-11337.

文章导航

/