欢迎访问《电化学(中英文)》期刊官方网站,今天是
碳纳米材料电化学近期研究专辑(客座编辑:长春应用化学研究所 陈卫研究员)

碳基三维自支撑超级电容器电极材料研究进展

  • 何水剑 ,
  • 陈 卫
展开
  • 1. 中国科学院长春应用化学研究所,电分析化学国家重点实验室,吉林 长春 130022;2. 中国科学院大学,北京 100039

收稿日期: 2015-08-27

  修回日期: 2015-10-16

  网络出版日期: 2015-11-02

基金资助

国家自然科学基金项目(No. 21575134,No. 21275136)资助

Progress of Self-supported Supercapacitor Electrode Materials Based on Carbon Substrates

  • HE Shui-jian ,
  • CHEN Wei
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2015-08-27

  Revised date: 2015-10-16

  Online published: 2015-11-02

摘要

自支撑电极材料在超级电容器中有着广泛的应用. 碳材料具有结构多样、来源丰富、价格低廉以及性能稳定等优点,是构建三维自支撑电极材料的首选基底材料. 本文结合作者课题组的研究工作,从“由上而下”和“由下而上”两个方面,概述了设计、制备三维自支撑电极材料的常用方法及材料的电容性能,希望对开发利用天然可再生资源,制备高性能的自支撑电极材料及其在超级电容器材料中的应用有所帮助.

本文引用格式

何水剑 , 陈 卫 . 碳基三维自支撑超级电容器电极材料研究进展[J]. 电化学, 2015 , 21(6) : 518 -533 . DOI: 10.13208/j.electrochem.150843

Abstract

Self-supported electrode materials have been widely used in supercapacitors. Carbon materials are promising substrates in building self-supported electrode materials attributed to their diverse structures, rich resource, relatively low cost and high stability. Combined with our own research in this field, we summarize here the recent progress on the synthesis of self-supported electrode materials and their supercapacitance properties. The overall synthetic strategy could be divided into two categories: “top-down” and “bottom-up”. We hope this review is helpful for the development and application of renewable sources in self-supported electrode materials.

参考文献

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.

[3] Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.

[4] Shi Y, Peng L L, Yu G H. Nanostructured conducting polymer hydrogels for energy storage applications[J]. Nanoscale, 2015, 7(30): 12796-12806.

[5] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.

[6] Yang Z B, Ren J, Zhang Z T, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews, 2015, 115(11): 5159-5223.

[7] Fan H L, Shen W Z. Carbon nanosheets: Synthesis and application[J]. ChemSusChem, 2015, 8(12): 2004-2027.

[8] Zhang Y F, Li L Q, Su H Q, et al. Binary metal oxide: Advanced energy storage materials in supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(1): 43-59.

[9] Cao J Y, Li X H, Wang Y M, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674.

[10] Hu X L, Zhang W, Liu X X, et al. Nanostructured Mo-based electrode materials for electrochemical energy storage[J]. Chemical Society Reviews, 2015, 44(8): 2376-2404.

[11] Shown I, Ganguly A, Chen L C, et al. Conducting polymer-based flexible supercapacitor[J]. Energy Science & Engineering, 2015, 3(1): 2-26.

[12] Balogun M S, Qiu W T, Wang W, et al. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices[J]. Journal of Materials Chemistry A, 2015, 3(4): 1364-1387.

[13] Jiang J, Li Y Y, Liu J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials, 2012, 24(38): 5166-5180.

[14] Cheng J P, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors[J]. RSC Advances, 2014, 4(73): 38893-38917.

[15] Peng X, Peng L L, Wu C Z, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chemical Society Reviews, 2014, 43(10): 3303-3323.

[16] Li L, Wu Z, Yuan S, et al. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy & Environmental Science, 2014, 7(7): 2101-2122.

[17] Inagaki M, Qiu J S, Guo Q G. Carbon foam: Preparation and application[J]. Carbon, 2015, 87(1): 128-152.

[18] Shearer C J, Cherevan A, Eder D. Application and future challenges of functional nanocarbon hybrids[J]. Advanced Materials, 2014, 26(15): 2295-2318.

[19] Titirici M-M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290.

[20] Chen T, Dai L M. Flexible supercapacitors based on carbon nanomaterials[J]. Journal of Materials Chemistry A, 2014, 2(28): 10756-10775.

[21] He Y M, Chen W J, Gao C T, et al. An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(19): 8799-8820.

[22] Wang G M, Wang H Y, Lu X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials, 2014, 26(17): 2676-2682.

[23] Masarapu C, Wang L P, Li X, et al. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure[J]. Advanced Energy Materials, 2012, 2(5): 546-552.

[24] Zhou W J, Zhou K, Liu X J, et al. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers[J]. Journal of Materials Chemistry A, 2014, 2(20): 7250-7255.

[25] Sevilla M, Mokaya R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage[J]. Energy & Environmental Science, 2014, 7(4): 1250-1280.

[26] Wang W, Liu W Y, Zeng Y X, et al. A Novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials, 2015, 27(23): 3572-3578.

[27] Zhao X, Tian H, Zhu M Y, et al. Carbon nanosheets as the electrode material in supercapacitors[J]. Journal of Power Sources, 2009, 194(2): 1208-1212.

[28] Hsu Y K, Chen Y C, Lin Y G, et al. High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution[J]. Journal of Materials Chemistry, 2012, 22(8): 3383-3387.

[29] Gu L, Wang Y W, Fang Y J, et al. Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric[J]. Journal of Power Sources, 2013, 243: 648-653.

[30] Hsieh C T, Teng H, Chen W Y, et al. Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/carbon paper electrodes[J]. Carbon, 2010, 48(15): 4219-4229.

[77] Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43): 5345-5354.

[78] Shao J J, Lv W, Yang Q H. Self-assembly of graphene oxide at interfaces[J]. Advanced Materials, 2014, 26(32): 5586-5612.

[79] Lv W, Zhang C, Li Z G, et al. Self-assembled 3D graphene monolith from solution[J]. The Journal of Physical Chemistry Letters, 2015, 6(4): 658-668.

[80] Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

[81] Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 2014, 7(6): 1850-1865.

[82] Wang X L, Shi G Q. Flexible graphene devices related to energy conversion and storage[J]. Energy & Environmental Science, 2015, 8(3): 790-823.

[83] Shao Y, El-Kady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews, 2015, 44(11): 3639-3665.

[84] Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23(25): 2833.

[85] Yang X W, Cheng C, Wang Y F, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145): 534-537.

[86] Aboutalebi S H, Jalili R, Esrafilzadeh D, et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles[J]. ACS NANO, 2014, 8(3): 2456-2466.

[87] Ding X T, Zhao Y, Hu C G, et al. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(31): 12355-12360.

[88] Li C, Shi G Q. Functional gels based on chemically modified graphenes[J]. Advanced Materials, 2014, 26(24): 3992-4012.

[89] Xu Y X, Shi G Q, Duan X F. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors[J]. Accounts of Chemical Research, 2015, 48(6): 1666-1675.

[90] Xu Y X, Lin Z Y, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: No. 4554.

[91] Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9(7): 555-562.

文章导航

/