欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学储能应用及产业化近期研究专辑 (厦门大学 赵金保教授主编)

富锂锰基层状正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2(x < 0.6,y > 0)的制备及性能研究

  • 冯海兰 ,
  • 刘亚飞 ,
  • 陈彦彬
展开
  • 1. 北京矿冶研究总院,北京 100160;2. 北京当升材料科技股份有限公司,北京 100160

网络出版日期: 2015-10-28

基金资助

北京矿冶研究总院课题(No. 02-926)

Preparation and Performance of Lithium-Rich Manganese Layered Materials 0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2(x < 0.6, y > 0)

  • FENG Hai-Lan ,
  • LIU Ya-Fei ,
  • CHEN Yan-Bin
Expand
  • 1. Beijing General Research Institute of Mining and Metallurgy, Beijing 100160, China; 2. Beijing Easpring Material Technology Co. Ltd., Beijing 100160, China

Online published: 2015-10-28

摘要

采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2•0.4LiNixMnyCo1-x-yO2(x < 0.6,y > 0). 使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征. 高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 oC时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成. 电性能测试结果表明,在充放电电压为2.0 ~ 4.6 V、电流密度20 mA•g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 mA•g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少.

本文引用格式

冯海兰 , 刘亚飞 , 陈彦彬 . 富锂锰基层状正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2(x < 0.6,y > 0)的制备及性能研究[J]. 电化学, 2015 , 21(5) : 480 -487 . DOI: 10.13208/j.electrochem.150743

Abstract

Lithium-rich manganese based cathode materials 0.6Li[Li1/3Mn2/3]O2•0.4LiNixMnyCo1-x-yO2 (x < 0.6, y > 0) were synthesized by carbonate co-precipitation and high temperature solid-state reaction. The structures and morphologies of the as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The results of high temperature in-situ XRD test show that the lattice parameters change significantly with increasing temperature and Ni content. The cation mixing gets serious and the spinel phase appears in the high Ni content samples when the temperature is up to 800 oC. Under voltages ranging from 2.0 to 4.6 V, the lower Ni content sample has the highest discharge capacity of 260.1 mA•g-1 (the initial coulombic efficiency of 83.2%) at current density of 20 mA•g-1, and the discharge capacity retention is up to 99.7% with the relatively smaller voltage decay after 50 cycles.

参考文献

[1] Shin S S, Sun Y K, Amine K. Synthesis and electrochemical properties of Li[Li(1-2x)/3NixMn(2-x)/3]O2 as cathode materials for lithium secondary batteries[J]. Journal of Power Sources, 2002, 112(2): 634-638. [2] Yu L Y, Qiu W H, Lian F, et al. Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2?0.35Li(Ni1/3Co1/3Mn1/3)O2[J]. Journal of alloys and compounds, 2009, 471(1/2): 317-321. [3] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of America Chemistry Society, 2006, 128(26): 8694-8698. [4] Lu Z, Dahn J R, Nahm K S, et al. Understanding the anomalous capacity of Li[NiLiMn]O cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of the Electrochemical Society, 2002, 149(7): A815-A822. [5] Guo X J, Li Y X, Zheng M. Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2?(1-x)Li[Ni1/3Mn1/3Co1/3]O2 (0≤x≤0.9) as cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2008, 184(2): 414-419. [6] Kang S H, Thackeray M M. Stabilization of xLi2MnO3?(1-x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic, fluorinated solutions[J]. Journal of the Electrochemical Society, 2008, 155(4): A269-A275. [7] Wu Y, Mantithiram A. High capacity of surface-modified layered Li[Li(1-x)/3 Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid State Letters, 2006, 9(5): A221-A224. [8] Borggel V, Markevich E, Aurbach D, et al. On the application of ionic liquids for rechargeable Li batteries: High voltage systems[J]. Journal of Power Sources, 2009, 189(1): 331-336. [9] Zhang K C(张克从),Zhang L H(张乐慧). Science and technology of crystal growth[M]. Bejing: Science Press(科学出版社), 1997: 70-81. [10] Lopez H A, Venkatachalam S, Kumat S, et al. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling. US: US8389160B2[P]. 2013. [11] Liu X Q, Guo Z M. Synthesis of spherical Li1.167Ni0.2Co0.1Mn0.533O2 as cathode material for lithium-ion battery via co-precipitation[J]. Materials International, 2012, 22(2): 126-129. [12] Kima J H, Park M S, Songa J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3?0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys and Compounds, 2012, 517: 20-25. [13] Stoyanova R, Zhecheva E, Vassilev S, et al. Mn4+ environment in lavered Li[Mg0.5-xNixMn0.5]O2 oxides monitored by EPR spectroscopy[J]. Journal of Solid State Chemistry, 2006, 179(2): 378-388. [14] Yang Y(杨越), Xu S M(徐盛明), Weng Y Q(翁雅青), et al. Preparation and characterization of xLi2MnO3?(1-x)Li( Ni1/3Co1/3Mn1/3)O2(x = 0.2, 0.4, 0.6) cathode materials synthesized by hydroxide co-precipitation method[J]. Journal of Functional Materials(功能材料), 2013, 19(44): 2878-2887. [15] Lee D K, Park S H, Amine K, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method[J]. Journal of Power Sources, 2006, 162(2): 1346-1350. [16] Sun Y K, Noh H J, Yoon C S, et al. Effect of Mn content in surface on the electrochemical properties of core-shell structured cathode materials[J]. Journal of the Electrochemical Society, 2012, 159(1): A1-A5. [17] Wang J, Qiu B, Cao H L, et al. Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2?0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2012, 218: 128-133. [18] Mohanty D, Kalnaus S, Roberta A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. Journal of Power Sources, 2013, 229: 239-248. [19] Lu Z, Beaulieu L Y, Donaberger. R A. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of the Electrochemical Society, 2002, 149(6): A778-A791. [20] Robertson A. D, Bruce P G, Kim J K, et al. Overcapacity of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 electrodes[J]. Electrochemical and Solid State Letters, 2004, 7(9): A294-A298. [21] Armstrong A R, Holzapfel M. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
文章导航

/