欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学储能应用及产业化近期研究专辑 (厦门大学 赵金保教授主编)

具有热关断涂层的锂电池隔膜性能表征

  • 白 莉 ,
  • 怀永建 ,
  • 艾新平 ,
  • 贾 海
展开
  • 1. 中航锂电(洛阳)有限公司,河南 洛阳 471003;2. 武汉大学化学与分子科学学院,湖北 武汉 430072

网络出版日期: 2015-10-28

Characterization of the Separator with Thermal-Shutdown Layer for Use in Lithium Batteries

  • BAI Li ,
  • HUAI Yong-jian ,
  • AI Xin-ping ,
  • JIA Hai
Expand
  • 1.China Aviation Lithium Battery Co., Ltd., Luoyang 471003, Henan, China; 2. Department of Chemistry, Wuhan University, Wuhan 430072, Hubei, China

Online published: 2015-10-28

摘要

介绍了一种具有热关断涂层的锂电池功能隔膜,利用热关断涂层的耐热特点来降低隔膜的热闭孔温度,当电池内部达到一定的温度时,涂层迅速熔化并覆于极片和隔膜之间,形成绝缘层,阻止锂离子的进一步传输,从而提高锂离子电池的安全性. 实验表明,热关断涂层表观均匀,对电池的内阻、倍率性能和循环性能没有不良影响. 电池的安全测试表明,该功能隔膜可表现出优异的安全防护作用.

本文引用格式

白 莉 , 怀永建 , 艾新平 , 贾 海 . 具有热关断涂层的锂电池隔膜性能表征[J]. 电化学, 2015 , 21(5) : 459 -464 . DOI: 10.13208/j.electrochem.150746

Abstract

In this paper, the lithium ion battery coated with the thermal-shutdown functional layer has been introduced. The shutdown temperature of the separator could be decreased by using the melting point of thermal-shutdown functional layer. When the internal battery environment reached a critical temperature, the functional layer melted and coated the anode/separator with a non-conductive barrier, halting Li-ion transport and shutting down the cell permanently. The results showed that the functional layer did not affect the resistance, rate performance and cycle life. It was found the functional layer can significantly improve the safety of the battery when misused.

参考文献

[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [3] Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197. [4] Moshtev R, Johnson B. State of the art of commercial Li ion batteries[J]. Journal of Power Sources, 2000, 91(2): 86-91. [5] Travas-Sejdic J, Steiner R, Desilvestro J, et al. Ion conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries[J]. Electrochimica Acta, 2001, 46(10): 1461-1466. [6] Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. [7] Zhang Z, Fouchard D, Rea JR. Differential scanning calorimetry material studies implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. [8] Yamaki J I, Baba Y, Katayama N, et al. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode[J]. Journal of Power Sources, 2003, 119(SI): 789-793. [9] Baba Y, Okada S, Yamaki J. Thermal stability of LixCoO2 cathode for lithium ion battery[J]. Solid State Ionics, 2002, 148(3/4): 311-316. [10] Tobishima S I, Takei K, Sakurai Y, et al. Lithium ion cells safety[J]. Journal of Power Sources, 2000, 90(2): 188-195. [11] Ji W X, Jiang B L, Ai F X, et al. Temperature-responsive microsphere coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015, 5(1): 172-176.

文章导航

/