欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

利用EQCM研究铅电极在硫酸和硫酸钠溶液中的反应机理

  • 邹献平 ,
  • 康宗轩 ,
  • 黄毓岚 ,
  • 舒东 ,
  • 钟雅云 ,
  • 郝俊南 ,
  • 廖雨清
展开
  • 1. 华南师范大学化学与环境学院,广东 广州 510006;2. 广州市能源转化与储能材料重点实验室,广东 广州 510006;3. 电化学储能材料与技术教育部工程研究中心,广东 广州 510006

收稿日期: 2015-01-26

  修回日期: 2015-04-09

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金(No. 21273085)、广州市科技计划项目(No. 2012J4300147)和广东省自然科学基金(No. S2011010003416)资助

Reaction Mechanisms Study of Pb Electrodes in Sulfuric Acid and Sodium Sulfate Solutions by EQCM

  • ZOU Xian-Ping ,
  • KANG Zong-Xuan ,
  • HUANG Yu-Lan ,
  • SHU Dong ,
  • ZHONG Ya-Yun ,
  • HAO Jun-南 ,
  • LIAO Yu-Qing
Expand
  • 1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; 2. Guangzhou Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006, China; 3. Engineering Research Center of Electrochemical Materials and Technology on Energy Storage, Ministry of Education, Guangzhou 510006, China

Received date: 2015-01-26

  Revised date: 2015-04-09

  Online published: 2015-08-28

摘要

使用电化学线性扫描伏安(LSV)、循环伏安(CV)和电化学石英晶体微天平(EQCM)方法研究了硫酸和硫酸钠溶液中铅电极表面的反应过程. 伏安曲线和电极表面质量变化结果分析表明,从-1.0 V到-0.4 V正向扫描时,铅在硫酸溶液中生成两种氧化产物,在-0.87 V时生成硫酸铅,在-0.73 V时生成PbO·PbSO4,然后PbO·PbSO4转化成硫酸铅,而铅在硫酸钠中的氧化产物只有硫酸铅. 因此,酸性溶液是PbO·PbSO4形成的必要条件,这进一步揭示了铅酸电池的负极放电机理,也为铅酸电池负极反应过程提供了新的研究方法.

本文引用格式

邹献平 , 康宗轩 , 黄毓岚 , 舒东 , 钟雅云 , 郝俊南 , 廖雨清 . 利用EQCM研究铅电极在硫酸和硫酸钠溶液中的反应机理[J]. 电化学, 2015 , 21(4) : 362 -367 . DOI: 10.13208/j.electrochem.150126

Abstract

Surface reaction processes of Pb electrodes were investigated in H2SO4 and Na2SO4 solutions by LSV, CV and EQCM. The results in the voltammogram and the mass change curve of the Pb electrode indicated that the oxide products of lead included PbSO4 and PbO·PbSO4 in sulfuric acid solution with a positive-going potential scan from -1.0 V to -0.4 V and then PbO·PbSO4 transformed into PbSO4. However, the oxide product of lead was only PbSO4 in sodium sulfate solution. The experimental results revealed that the acid solution is necessary for the formation of PbO·PbSO4 and the negative discharge mechanism of lead-acid batteries was suggested. This study had also provided a new research method for the negative plates of lead-acid battery.

参考文献

[1] Li H, Liu H P, Wang Q M, et al. Effects of covalently bonded siloxane on the electrochemical and physical behavior of GEL-VRLA battery[J]. Electrochimica Acta, 2010, 56(2): 663-666.
[2] Xiang J Y, Ding P, Zhang H, et al. Benefical effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2013, 241(1): 150-158.
[3] Saravanan M, Ganesan M, Ambalavanan S. A modified lead-acid negative electrode for high-rate partial-state-of-charge applications batteries and energy storage[J]. Journal of Electrochemical Society, 2012, 159(4): A452-A458.
[4] Gandhi K S. Role of electrical resistance of electrodes in modeling of discharging and charging of flooded lead-acid batteries[J]. Journal of Power Sources, 2015, 277: 124-130.
[5] Swogger S W, Everill P, Dubey D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources, 2014, 261: 55-63.
[6] Shanmugasundharam L, Ramasamy M. Influence of some nanostructured materials additives on the performance of lead acid battery negative electrodes[J]. Electrochimica Acta, 2014, 144(20): 147-153.
[7] Shapira R, Nessim G D, Zimrin T, et al. Towards promising electrochemical technology for load leveling application: Extending cycle life of lead acid batteries by the use of carbon nano-tubes (CNTs)[J]. Energy &Environmental Science, 2013, 6(2): 587-594.
[8] Kumar S M, Ambalavanan S, Mayavan S. Effects of graphene and carbon nanotubes on the negative active materials of lead acid batteries operating under high-rate partial-state of charge operation[J]. RSC Advances, 2014, 4(69): 36517-36521.
[9] Pavlov D, Rogachev T, Nikolov P, et al. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J]. Journal of Power Sources, 2009, 191(1): 58-75.
[10] Saravanan M, Ganesan M, Ambalavanan S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources, 2014, 251: 20-29.
[11] Pavlov D, Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources, 2013, 242: 380-399.
[12] Zhao L, Chen B S, Wang D L. Effects of electrochemically active carbon and indium oxide in negative lpates on cycle performance of valve-regulated lead-acid batteries during high-rate partial-state of charge operation[J]. Journal of Power Sources, 2013, 231: 34-38.
[13] Ellen E, Daniel B, Alexander B, et al. Carbon blacks for the extension of the cycle life in flooded lead acid batteries for micro-hybrid applications[J]. Journal of Power Sources, 2013, 239: 483-489.
[14] Pavlov D, Nikolov P. Lead-carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty batteries and energy storage[J]. Journal of Electrochemical Society, 2012, 159(8): A1215-A1225.
[15] Krivik P, Baca P, Tonar K, et al. Improving the negative lead-acid battery electrodes by using extra additives[J]. ECS Transactions, 2012, 40(1): 145-152.
[16] Wang L Z(王力臻), Zhang K Q(张凯庆), Zhang L S(张林森), et al. Effect of carbon material on electrochemical characteristic of negative electrodes of lead-acid battery[J]. Chinese Journal of Power Sources(电源技术), 2012, 36(9): 1325-1329.
[17] Long L(龙璐), Shi L Y(施利勇), Zhu J(朱健), et al. Effects of carbon material to the performance of ultra-battery[J]. Battery Bimonthly(电池), 2014, 44(3): 147-149.
[18] Mech K, Zabinski P, Kowalik R. Analysis of Rhodium electrodeposition from Chloride solutions[J]. Journal of Electrochemical Society, 2014, 161: D458-D461.
[19] Mitsuhiro S, Takahiro T, Kazuaki T, et al. EQCM investigation on electrodeposition and charge stroge behavior of birnessite-Type MnO2[J]. ECS Transactions, 2013, 50(43): 85-92.
[20] Chen G L(陈国良), Lin H(林珩), Zheng X H(郑杏红), et al. Oxidation of n-propyl alcohol on Pt and Sb, S modified Pt electrodes using CV&EQCM[J]. Acta Physico-Chimica Sinica(物理化学学报), 2002, 18(2): 147-151.
[21] Lin H(林珩), Chen S P(陈声培), Lin J M(林进妹), et al. An EQCM study of water adsorption and oxidation on Pt electrodes in sulfate acid solution[J]. Journal of Electrochemistry(电化学), 2003, 9(1): 47-53.
[22] Gao J C(高继超), Qi L(齐力), Wang H Y(王宏宇). EQCM studies on the effect of anti-freezing additives on the storage behavior of ions at activates carbon electrodes in NaClO4 aqueous solutions[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2014, 35(3): 608-612.
[23] Maiara O S, Vitor L M, Roberto M T, et al. An EQCM-D study of the influence of chloride on the lead anodic oxidation[J]. Electrochimica Acta, 2012, 78(1): 347-352.
[24] Peng X L(彭谢兰), Xie Q J(谢青季), Kang Q(康青), et al. Study on the electrodeposition of hydroxides in hydrated perchlorate + organic solvent systems using EQCM[J]. Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(11): 1361-1366.
[25] Pech D, Brousse T, Bélanger D, et al. EQCM study of electrodeposited PbO2: Investigation of the gel formation and discharge mechanisms[J]. Electrochimica Acta, 2009, 54(28): 7382-7388.
[26] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution[J]. Electrochimica Acta, 1985, 30(10): 1295-1300.
[27] Chang W, Krishnan R. In situ charaterzation of lead carrosion layers by combined voltammetry, coulometry, and electrochemical quartz crystal[J]. Journal of Electrochemical Society, 1993, 140(8): L128-L130.
文章导航

/