[1] Li H, Liu H P, Wang Q M, et al. Effects of covalently bonded siloxane on the electrochemical and physical behavior of GEL-VRLA battery[J]. Electrochimica Acta, 2010, 56(2): 663-666.
[2] Xiang J Y, Ding P, Zhang H, et al. Benefical effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2013, 241(1): 150-158.
[3] Saravanan M, Ganesan M, Ambalavanan S. A modified lead-acid negative electrode for high-rate partial-state-of-charge applications batteries and energy storage[J]. Journal of Electrochemical Society, 2012, 159(4): A452-A458.
[4] Gandhi K S. Role of electrical resistance of electrodes in modeling of discharging and charging of flooded lead-acid batteries[J]. Journal of Power Sources, 2015, 277: 124-130.
[5] Swogger S W, Everill P, Dubey D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources, 2014, 261: 55-63.
[6] Shanmugasundharam L, Ramasamy M. Influence of some nanostructured materials additives on the performance of lead acid battery negative electrodes[J]. Electrochimica Acta, 2014, 144(20): 147-153.
[7] Shapira R, Nessim G D, Zimrin T, et al. Towards promising electrochemical technology for load leveling application: Extending cycle life of lead acid batteries by the use of carbon nano-tubes (CNTs)[J]. Energy &Environmental Science, 2013, 6(2): 587-594.
[8] Kumar S M, Ambalavanan S, Mayavan S. Effects of graphene and carbon nanotubes on the negative active materials of lead acid batteries operating under high-rate partial-state of charge operation[J]. RSC Advances, 2014, 4(69): 36517-36521.
[9] Pavlov D, Rogachev T, Nikolov P, et al. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J]. Journal of Power Sources, 2009, 191(1): 58-75.
[10] Saravanan M, Ganesan M, Ambalavanan S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources, 2014, 251: 20-29.
[11] Pavlov D, Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources, 2013, 242: 380-399.
[12] Zhao L, Chen B S, Wang D L. Effects of electrochemically active carbon and indium oxide in negative lpates on cycle performance of valve-regulated lead-acid batteries during high-rate partial-state of charge operation[J]. Journal of Power Sources, 2013, 231: 34-38.
[13] Ellen E, Daniel B, Alexander B, et al. Carbon blacks for the extension of the cycle life in flooded lead acid batteries for micro-hybrid applications[J]. Journal of Power Sources, 2013, 239: 483-489.
[14] Pavlov D, Nikolov P. Lead-carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty batteries and energy storage[J]. Journal of Electrochemical Society, 2012, 159(8): A1215-A1225.
[15] Krivik P, Baca P, Tonar K, et al. Improving the negative lead-acid battery electrodes by using extra additives[J]. ECS Transactions, 2012, 40(1): 145-152.
[16] Wang L Z(王力臻), Zhang K Q(张凯庆), Zhang L S(张林森), et al. Effect of carbon material on electrochemical characteristic of negative electrodes of lead-acid battery[J]. Chinese Journal of Power Sources(电源技术), 2012, 36(9): 1325-1329.
[17] Long L(龙璐), Shi L Y(施利勇), Zhu J(朱健), et al. Effects of carbon material to the performance of ultra-battery[J]. Battery Bimonthly(电池), 2014, 44(3): 147-149.
[18] Mech K, Zabinski P, Kowalik R. Analysis of Rhodium electrodeposition from Chloride solutions[J]. Journal of Electrochemical Society, 2014, 161: D458-D461.
[19] Mitsuhiro S, Takahiro T, Kazuaki T, et al. EQCM investigation on electrodeposition and charge stroge behavior of birnessite-Type MnO2[J]. ECS Transactions, 2013, 50(43): 85-92.
[20] Chen G L(陈国良), Lin H(林珩), Zheng X H(郑杏红), et al. Oxidation of n-propyl alcohol on Pt and Sb, S modified Pt electrodes using CV&EQCM[J]. Acta Physico-Chimica Sinica(物理化学学报), 2002, 18(2): 147-151.
[21] Lin H(林珩), Chen S P(陈声培), Lin J M(林进妹), et al. An EQCM study of water adsorption and oxidation on Pt electrodes in sulfate acid solution[J]. Journal of Electrochemistry(电化学), 2003, 9(1): 47-53.
[22] Gao J C(高继超), Qi L(齐力), Wang H Y(王宏宇). EQCM studies on the effect of anti-freezing additives on the storage behavior of ions at activates carbon electrodes in NaClO4 aqueous solutions[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2014, 35(3): 608-612.
[23] Maiara O S, Vitor L M, Roberto M T, et al. An EQCM-D study of the influence of chloride on the lead anodic oxidation[J]. Electrochimica Acta, 2012, 78(1): 347-352.
[24] Peng X L(彭谢兰), Xie Q J(谢青季), Kang Q(康青), et al. Study on the electrodeposition of hydroxides in hydrated perchlorate + organic solvent systems using EQCM[J]. Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(11): 1361-1366.
[25] Pech D, Brousse T, Bélanger D, et al. EQCM study of electrodeposited PbO2: Investigation of the gel formation and discharge mechanisms[J]. Electrochimica Acta, 2009, 54(28): 7382-7388.
[26] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution[J]. Electrochimica Acta, 1985, 30(10): 1295-1300.
[27] Chang W, Krishnan R. In situ charaterzation of lead carrosion layers by combined voltammetry, coulometry, and electrochemical quartz crystal[J]. Journal of Electrochemical Society, 1993, 140(8): L128-L130.