[1] Xiong L, Chen C, Chen Q, et al. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J]. Journal of Hazardous Materials, 2011,189(3): 741-748.
[2] Zhao X, Jia Q, Song N, et al. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and isotherms[J]. Journal of Chemical & Engineering Data, 2010, 55(10): 4428-4433.
[3] Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface science, 2009, 333(1): 14-26.
[4] Macchi G, Marani D, Pagano M, et al. A bench study on lead removal from battery manufacturing wastewater by carbonate precipitation[J]. Water Research, 1996, 30(12): 3032-3036.
[5] Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials, 2011, 185(1): 140-147.
[6] Dabrowski A, Hubicki Z, Podko?cielny P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91-106.
[7] Chellammal S, Raghu S, Kalaiselvi P, et al. Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength cod[J]. Journal of Hazardous Materials, 2010, 180(1): 91-97.
[8] Sun B, Hao X G, Wang Z D, et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. Journal of Hazardous Materials, 2012, 233-234(9): 177-183.
[9] Wang Z D, Ma Y, Hao X G, et al. Enhancement of heavy metals removal efficiency from liquid wastes by using potential-triggered proton self-exchange effects[J]. Electrochimica Acta, 2014, 130: 40-45.
[10] Hao X G, Li Y, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414.
[11] Lilga M A, Orth R J, Sukamto J, et al. Metal ion separations using electrically switched ion exchange[J]. Separation and Purification Technology, 1997, 11(3): 147-158.
[12] Weidlich C, Mangold K M, Jüttner K. Continuous ion exchange process based on polypyrrole as an electrochemically switchable ion exchanger[J]. Electrochimica Acta, 2005, 50(25): 5247-5254.
[13] Wang Z D, Feng Y T, Hao X G, et al. An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste[J]. Journal of Hazardous Materials, 2014, 274(15): 436-442.
[14] Cui H, Li Q, Qian Y, et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor[J]. Water Research, 2011, 45(17): 5736-5744.
[15] Weidlich C, Mangold K M, Jüttner K. EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes[J]. Electrochimica Acta, 2005, 50(7): 1547-1552.
[16] Pan B C, Zhang Q R, Du W, et al. Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism[J]. Water Research, 2007, 41(14): 3103-3111.
[17] Jiang P J, Pan B J, Pan B C, et al. A comparative study on lead sorption by amorphous and crystalline zirconium phosphates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1/3): 108-112.
[18] Takei T, Kobayashi Y, Hata H, et al. Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films[J]. Journal of the American Chemical Society, 2006, 128(51): 16634-16640.
[19] Takei T, Dong Q, Yonesaki Y, et al. Preparation of hybrid film of polyaniline and organically pillared zirconium phosphate nanosheet by electrodeposition[J]. Langmuir, 2011, 27(1): 126-131.
[20] Takei T, Dong Q, Yonesaki Y, et al. Synthesis of polypyrrole-intercalated grafted zirconium phosphate films by anodic electrodeposition and their electrochemical capacities[J]. Polymers, 2010, 3(1): 1-9.
[21] Wang Z D, Feng Y T, Hao X G, et al. A novel potential-responsive ion exchange film system for heavy metal removal[J]. Journal of Materials Chemistry A, 2014, 2(3): 10263-10272 .
[22] Trobajo C, Khainakov S A, Espina A, et al. On the synthesis of α-zirconium phosphate[J]. Chemistry of Materials, 2000, 12(6): 1787-1790.
[23] Shan H Y. Citation review of lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59(1): 171-177.
[24] Ho Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 136(3): 681-689.
[25] Helen M, Viswanathan B, Murthy S S. Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid[J]. Journal of Membrane Science, 2007, 292(1): 98-105.
[26] Yang P, Zhang J, Guo Y. Synthesis of intrinsic fluorescent polypyrrole nanoparticles by atmospheric pressure plasma polymerization[J]. Applied Surface Science, 2009, 255(15): 6924-6929.
[27] Mallouki M, Tran-Van F, Sarrazin C, et al. Electrochemical storage of polypyrrole-Fe2O3 nanocomposites in ionic liquids[J]. Electrochimica Acta, 2009, 54(11): 2992-2997.
[28] Nicho M, Hu H. Fourier transform infrared spectroscopy studies of polypyrrole composite coatings[J]. Solar Energy Materials and Solar Cells, 2000, 63(4): 423-435.
[29] Sun L Y, Boo W J, Sun D, et al. Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets[J]. Chemistry of Materials, 2007, 19(7): 1749-1754.
[30] Wang L, Xu W H, Yang R, et al. Electrochemical and density functional theory investigation on high selectivity and sensitivity of exfoliated nano-zirconium phosphate toward lead(II)[J]. Analytical Chemistry, 2013, 85(8): 3984-3990.
[31] Peng Q M, Guo J X, Zhang Q R, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society, 2014, 136(11): 4113-4116.
[32] Marcus Y. Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(3): 2995-2999.
[33] Mashitah M, Yus Azila Y, Bhatia S. Biosorption of cadmium(II) ions by immobilized cells of pycnoporus sanguineus from aqueous solution[J]. Bioresource Technology, 2008, 99(11): 4742-4748.
[34] Malkoc E, Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste[J]. Journal of Hazardous Materials, 2005, 127(2): 120-128.
[35] Salinas E, Elorza de Orellano M, Rezza I, et al. Removal of cadmium and lead from dilute aqueous solutions by rhodotorula rubra[J]. Bioresource Technology, 2000, 72(2): 107-112.
[36] Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface Science, 2009, 333(1): 14-26.
[37] Saeed A, Iqbal M, Akhtar M W. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk)[J]. Journal of Hazardous Materials, 2005, 117(1): 65-73.
[38] Taty-Costodes V C, Fauduet H, Porte C, et al. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of pinus sylvestris [J]. Journal of Hazardous Materials, 2003, 105(1): 121-142.
[39] Isaac C P J, Sivakumar A. Removal of lead and cadmium ions from water using annona squamosa shell: Kinetic and equilibrium studies[J]. Desalination and Water Treatment, 2013, 51(40): 7700-7709.
[40] Gupta S S, Bhattacharyya K G. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management, 2008, 87(1): 46-58.
[41] Wang Y, Tang X W, Chen Y M, et al. Adsorption behavior and mechanism of Cd(II) on loess soil from china[J]. Journal of Hazardous Materials, 2009, 172(1): 30-37.
[42] Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research, 2000, 34(3): 735-742.