欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Mn3O4/石墨烯复合材料的制备与电化学性能研究

  • 杨姗姗 ,
  • 张倩 ,
  • 林雄贵 ,
  • 郑明森 ,
  • 董全峰
展开
  • 厦门大学 固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门361005

收稿日期: 2015-04-14

  修回日期: 2015-05-15

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金项目(No.20720150042,No.21321062)及973项目(No.2015CB251102)资助

Synthesis and Electrochemical Performance of Mn3O4/Graphene Composites

  • YANG Shan-Shan ,
  • ZHANG Qian ,
  • LIN Xiong-Gui ,
  • ZHENG Ming-Sen ,
  • DONG Quan-Feng
Expand
  • State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2015-04-14

  Revised date: 2015-05-15

  Online published: 2015-08-28

摘要

本文以氧化石墨烯(GO)溶液为氧化剂,采用水热法使GO直接氧化Mn(Ac)2制备Mn3O4/石墨烯复合材料,并通过在制备过程中加入氨水提高了复合材料中GO的还原程度与Mn3O4颗粒的分散性. 制得的Mn3O4/石墨烯复合材料表现出优异的电化学性能. 在0.5 A·g-1的电流密度下复合材料质量比容量可达到850 mAh·g-1,0.5 A·g-1时充放电循环测试200周容量保持率为99%.

本文引用格式

杨姗姗 , 张倩 , 林雄贵 , 郑明森 , 董全峰 . Mn3O4/石墨烯复合材料的制备与电化学性能研究[J]. 电化学, 2015 , 21(4) : 326 -331 . DOI: 10.13208/j.electrochem.150414

Abstract

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much smaller. The Mn3O4/Graphene composites exhibited a high specific capacity with good rate capability and cycle stability. At the test current density of 0.5 A·g-1, the composites demonstrated a capacity of 850 mAh·g-1, and no capacity decays were observed up to 200 cycles.

参考文献

[1] Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
[2] Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.
[3] Wu C, Yin P, Zhu X, et al. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors[J]. The Journal of Physical Chemistry B, 2006, 110(36): 17806-17812.
[4] Wang Z Y, Luan D Y, Madhavi S, et al. α-Fe2O3 nanotubes with superior lithium storage capability[J]. Chemical Communications, 2011, 47(28): 8061-8063.
[5] Wang B, Zhu T, Wu H B, et al. Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)·0.11H2O nanowires with improved supercapacitive properties[J]. Nanoscale 2012, 4(6): 2145-2149.
[6] Chen J S, Cheah Y L, Madhavi S, et al. Fast synthesis of α-MoO3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8675-8678.
[7] Wang H Y, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. Journal of the American Chemical Society, 2010, 132(40): 13978-13980.
[8] Gao J, Lowe M A, Abru?a H D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(13): 3223-3227.
[9] Cheekati S, Xing Y, Zhuang Y, et al. Graphene platelets and their manganese composites for lithium-ion batteries[J]. ECS Transactions, 2011, 33(39): 23-32.
[10] Dubal D P, Holze R. High capacity rechargeable battery electrode based on mesoporous stacked Mn3O4 nanosheets[J]. RSC Advances, 2012, 2(32): 12096-12100.
[11] Lavoie N, Malenfant P R, Courtel F M, et al. High gravimetric capacity and long cycle life in Mn3O4/graphene-platelet/LiCMC composite lithium-ion battery anodes[J]. Journal of Power Sources, 2012, 213: 249-254.
[12] Li L, Guo Z P, Du A J, et al. Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties[J]. Journal of Materials Chemistry, 2012, 22(8): 3600-3605.
[13] Liu S Y, Xie J, Zheng Y X, et al. Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties[J]. Electrochimica Acta, 2012, 66: 271-278.
[14] Wang C B, Yin L W, Xiang D, et al. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1636-1642.
[15] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[16] Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.
[17] Kim H, Kim S W, Hong J, et al. Electrochemical and ex situ analysis on manganese oxide/graphene hybrid anode for lithium rechargeable batteries[J]. Journal of Materials Research, 2011, 26(20): 2665-2671.
[18] Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282-286.
[19] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[20] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736.
[21] Wang L, Li Y H, Han Z D, et al. Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene[J]. Journal of Materials Chemistry A, 2013, 1(29): 8385-8397.
[22] Park S, Dikin D A, Nguyen S B T, et al. Graphene oxide sheets chemically cross-linked by polyallylamine[J]. The Journal of Physical Chemistry C, 2009, 113(36): 15801-15804.
[23] Lowe M A, Gao J, Abru?a H D. In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(6): 2094-2103.
文章导航

/