欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

尖晶石LiNi0.5Mn1.5O4正极材料首周充放电过程的结构与动力学研究

  • 王琴 ,
  • 周丽丽 ,
  • 沈重亨 ,
  • 王琪 ,
  • 黄令 ,
  • 李君涛 ,
  • 孙世刚
展开
  • 1. 厦门大学化学化工学院化学系,福建 厦门 361005;2. 厦门大学能源研究院,福建 厦门 361005

收稿日期: 2015-03-25

  修回日期: 2015-04-17

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金项目(No. 21273184,No. 21321062)及973项目(No. 2015CB251102)资助

Structural and Dynamic Studies of Spinel LiNi0.5Mn1.5O4Cathode Material during Initial Charge/Discharge Processes

  • WANG Qin ,
  • ZHOU Li-Li ,
  • SHEN Zhong-Heng ,
  • WANG Qi ,
  • HUANG Ling ,
  • LI Jun-Tao ,
  • SUN Shi-Gang
Expand
  • 1. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China; 2. School of Energy Research, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2015-03-25

  Revised date: 2015-04-17

  Online published: 2015-08-28

摘要

以NaOH为沉淀剂,采用共沉淀法制备尖晶石LiNi0.5Mn1.5O4正极材料,使用X-射线衍射(XRD)、傅里叶转换红外光谱(FTIR)和扫描电镜(SEM)分析材料结构与表面形貌. 结果表明,该材料属于空间群的无序尖晶石LiNi0.5Mn1.5O4材料,由八面体粒子团聚成3 ~ 6 μm的大粒子. 恒电流充放电结果显示,材料在0.1C倍率下首周放电比容量为121.5 mAh·g-1,经过150周充放电后,材料比容量无明显衰减,其容量保持率为99%. 用PITT和原位XRD联用技术研究了充放电过程中材料的结构与锂离子扩散系数之间的关系. PITT法测得材料中锂离子的扩散系数为10-10 ~ 10-11 cm2·s-1.

本文引用格式

王琴 , 周丽丽 , 沈重亨 , 王琪 , 黄令 , 李君涛 , 孙世刚 . 尖晶石LiNi0.5Mn1.5O4正极材料首周充放电过程的结构与动力学研究[J]. 电化学, 2015 , 21(4) : 312 -318 . DOI: 10.13208/j.electrochem.150325

Abstract

The spinel LiNi0.5Mn1.5O4 material was synthesized by co-precipitation method with NaOH as a precipitant. The structure and morphology of the as-prepared LiNi0.5Mn1.5O4 materials were characterized by means of XRD、FTIR and SEM. The results indicated that the material belonged to space group and consisted of octahedral particles with the sizes of 3 ~ 6 μm. Electrochemical tests showed the first discharge specific capacity of 121.5 mAh·g-1 at 0.1C. After 150 cycles, about 99% of reversible capacity was retained for the LiNi0.5Mn1.5O4 material. A combining potentiostatic intermittent titration technique (PITT) with in-situ XRD measurement was applied for discussing the relationship between lattice parameter and the diffusion coefficient of lithium ion (DLi+) during the first charging-discharging processes. The DLi+ value measured by PITT was in the range of 10-10 ~ 10-11 cm2·s-1

参考文献

[1] Fang X, Lu Y, Ding N, et al. Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li-Ni-Mn acetate[J]. Electrochimica Acta, 2010, 55(3): 832-837.
[2] Julien C M, Mauger A. Review of 5-V electrodes for Li-ion batteries: Status and trends[J]. Ionics, 2013, 19(7): 951-988.
[3] Gu Y J, Zang Q F, Liu H Q, et al. Characterization and electrochemical properties of LiNi0.5Mn1.5O4 prepared by a carbonate co-precipitation method[J]. International Journal of Electrochemical Science, 2014, 9: 7712 - 7724.
[4] Xue Y, Wang Z, Yu F, et al. Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(12): 4185-4191.
[5] Lin H B, Zhang Y M, Hu J N, et al. LiNi0.5Nn1.5O4 nanoparticles: Synthesis with synergistic effect of polyvinylpyrrolidone and ethylene glycol and performance as cathode of lithium ion battery[J]. Journal of Power Sources, 2014, 257: 37-44.
[6] Zhu Z, Yan H, Zhang D, et al. Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery[J]. Journal of Power Sources, 2013, 224: 13-19.
[7] Liu D, Zhu W, Trottier J, et al. Spinel materials for high-voltage cathodes in Li-ion batteries[J]. RSC Advances, 2014, 4(1): 154-167.
[8] Tang S B, Lai M O, Lu L. Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques[J]. Materials Chemistry and Physics, 2008, 111(1): 149-153.
[9] Yi T F, Yang S Y, Ma H T, et al. Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4 positive-electrode material[J]. Ionics, 2013, 20(3): 309-314.
[10] Yang M C, Xu B, Cheng J H, et al. Electronic, structural, and electrochemical properties of LiNixCuyMn2-x-yO4(0 < x< 0.5, 0 < y < 0.5) high-voltage spinel materials[J]. Chemistry of Materials, 2011, 23(11): 2832-2841.
[11] Xia H, Lu L. Li diffusion in spinel LiNi0.5Mn1.5O4 thin films prepared by pulsed laser deposition[J]. Physica Scripta, 2007, T129: 43-48.
[12] Rui X H, Ding N, Liu J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010, 55(7): 2384-2390.
[13] Zhu W, Liu D, Trottier J, et al. In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped LixMn1.5Ni0.5o4 (0.1 ≤ x ≤ 1.0) 5-V cathode materials[J]. Journal of Power Sources, 2013, 242: 236-243.
[14] Hai B, Shukla A K, Duncan H, et al. The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials[J]. Journal of Materials Chemistry A, 2013, 1(3): 759.
[15] Shen C H, Huang L, Lin Z, et al. Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3.0.5LiNi(0.292)Co(0.375)Mn(0.333)O2 material investigated by a novel technique combining in situ XRD and a multipotential step[J]. ACS Applied Materials Interfaces, 2014, 6(15): 13271-13279.
[16] Feng J J, Huang Z P, Guo C, et al. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4[J]. ACS Applied Materials Interfaces, 2013, 5: 10227-10232.
[17] Sha O, Tang Z Y, Wang S L, et al. The multi-substituted LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode material with excellent rate capability and cycle life[J]. Electrochimica Acta, 2012, 77: 250-255.
[18] Bao S J, Li C M, Li H L, et al. Morphology and electrochemistry of LiMn2O4 optimized by using different Mn sources[J]. Journal of Power Sources, 2007, 164(2): 885-889.
[19] Wei Y J, Nam K, Kim K, et al. Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4[J]. Solid State Ionics, 2006, 177(1/2): 29-35.
[20] Zhang L, Lv X Y, Wen Y X, et al. Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2009, 480(2): 802-805.
[21] Kunduraci M, Al-Sharab J F, Amatucci G G. High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology[J]. Chemistry of Materials, 2006, 18(15): 3585-3592.
[22] Liu D, Hamel-Paquet J, Trottier J, et al. Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method[J]. Journal of Power Sources, 2012, 217: 400-406.
[23] Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5Mn1.5O4-? and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914.
[24] Mukerjee S, Yang X Q, Sun X, et al. In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries[J]. Electrochimica Acta, 2004, 49(20): 3373-3382.
文章导航

/