欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

表面增强拉曼光谱研究吸附电位对CO在Pt电极上氧化行为的影响

  • 张普 ,
  • 卫怡 ,
  • 郑勇力 ,
  • 陈艳霞 ,
  • 田中群
展开
  • 1. 中国科技大学化学物理系 合肥微尺度物质科学国家实验室(筹),安徽 合肥 230026;2. 厦门大学化学化工学院 固体表面物理国家重点实验室,福建 厦门 361005

收稿日期: 2015-03-09

  修回日期: 2015-05-05

  网络出版日期: 2015-08-28

基金资助

国家重大科学仪器设备开发专项(No. 2011YQ03012416)资助

Effect of Adsorption Potential on CO Oxidation at Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study

  • ZHANG Pu ,
  • WEI Yi ,
  • ZHENG Yong-Li ,
  • CHEN Yan-Xia ,
  • TIAN Zhong-Qun
Expand
  • 1. Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China; 2. State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2015-03-09

  Revised date: 2015-05-05

  Online published: 2015-08-28

摘要

预吸附电势对CO在Pt上的氧化行为有重要影响. 在电势低于0.3 V(vs. RHE)下,预吸附的CO单层在Pt电极上0.4 V就开始氧化,并会在0.6 V左右出现1个较小的氧化峰,即所谓的“氧化前峰”,而在双电层电位区间饱和吸附的CO只有当电势正于0.6 V才氧化

本文引用格式

张普 , 卫怡 , 郑勇力 , 陈艳霞 , 田中群 . 表面增强拉曼光谱研究吸附电位对CO在Pt电极上氧化行为的影响[J]. 电化学, 2015 , 21(4) : 305 -311 . DOI: 10.13208/j.electrochem.150309

Abstract

The adsorption/oxidation of CO on the 55 nm Au@0.7 nm Pt nanoparticles electrode in both potentiodynamic and potentiostatic modes were investigated by surface enhanced Raman spectroscopy in a thin layer electrochemical flow cell under controlled mass transport, with the aim of clarifying the origin CO oxidation at lower electrode potentials (in current pre-wave region of corresponding cyclic voltammograms). Our results demonstrated that the CO oxidation kinetics differed significantly from the three kinds of different CO adsorption history, with almost no CO oxidation current in the pre-peak potential region after 0.35 VRHE CO adsorption with or without subsequent holding the potential at 0.06 VRHE for 30 min, compared to the significant CO oxidation current at lower potentials in both cyclic voltammograms and potentiostatic current transients after CO adsorption at 0.06 VRHE. In contrast, at the same reaction potential in the pre-wave region both during linear potential sweep and potential step experiments, differences in Raman spectra of saturated CO adlayer with CO adsorption potential of 0.06 VRHE and 0.35 VRHE were negligible. Possible origins for the effect of pre-adsorption potential on CO oxidation kinetics are discussed.

参考文献

[1]Kaita H, Shimazu K, Kunimatsu K. Electrochemical oxidation of CO on Pt in acidic and alkaline solution: Part I. voltammetric study on the adsorbed species and effects of aging and Sn(IV) pretreatment[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241(1/2): 163-179.
[2]Kunimatsu K, Seki H, Golden W G, et al. Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy: II. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids[J]. Langmuir, 1985, 1(2): 245-250.
[3]Chang S C, Weaver M J. In situ infrared spectroscopy of carbon monoxide adsorbed at ordered platinum(100)-aqueous interfaces: Double-layer effects upon the adsorbate binding geometry[J]. The Journal of Physical Chemistry, 1990, 94(12): 5095-5102.
[4]Wantanabe S, Kinomoto Y, Kitamura F, et al. Electron Spectrosc. Rel[J]. Phenom, 1990, 54(5): 1205-1214.
[5]Akemann W, Friedrich K A, Stimming U. Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution: Evidence for a site selective charge transfer[J]. Journal of Chemical Physics, 2000, 113(16): 6864-6867.
[6]Lopez-Cudero A, Cuesta A, Gutierrez C. Potential depence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100)[J]. Journal of Electroanalytical Chemistry, 2006, 586(2): 204-216.
[7]Markovic N M, Lucas C A, Grgur B N, et al. Surface electrochemistry of CO and H2/CO mixtures at Pt(100) interface: Electrode kinetics and interfacial structures[J]. The Journal of Physical Chemistry B, 1999, 103(44): 9616-9623.
[8]Batista E A, Iwasita T, Vielstich W. Mechanism of stationary bulk co oxidation on Pt(111) electrodes[J]. The Journal of physical Chemistry B, 2004, 108(38): 14216-14222.
[9]Strmcnik D S, Tripkovic D V, van der Vliet D, et al. Unique activity of platinum adisland in the CO electrooxidation reaction[J]. Journal of the American Chemical Society, 2008, 130(46): 15332-15339.
[10]Hu J W, Li J F, Ren B, et al. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate[J]. The Journal of Physical Chemistry C, 2007, 111(3): 1105-1112.
[11]Kunimatsu K, Sato T, Uchida H, et al. Adsorption/oxidation of Coon highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: Oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black[J]. Langmuir, 2008, 24(7): 3590-3601.
[12]Kunimatsu K, Sato T, Uchida H et al. Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in-situ ATR-FTIR method[J]. Electrochimica Acta, 2008, 53(21): 6104-6110.
[13]Zhang P, Cai J, Chen Y X, et al. Potential-dependent chemsorption of carbon monoxide at a gold core-platinum shell nanoparticle electrode: A combined study by electrochemical in situ surface-enhanced raman spectrosopy and density functional theory[J]. The Journal of Physical Chemistry C, 2010, 114(1): 403-411
[14]Markovic N M, Ross P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports, 2002, 45(4): 117-229
文章导航

/