[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Abruna H D, Meyer T J. Introduction to ACS catalysis' special issue on electrocatalysis[J]. ACS Catalysis, 2012, 2(5): 899-900.
[3] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] Jiang J(蒋颉), Liu X F(刘晓飞), Zhao S Y(赵世勇), et al. Research progress of organic electrolyte based lithium-air batteries[J]. Acta Chimica Sinica(化学学报), 2014, 72(4): 417-426.
[5] Lee J S, Kim S T, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[6] Read J. Characterization of the lithium/oxygen organic electrolyte battery[J]. Journal of the Electrochemical Society, 2002, 149(9): A1190-A1195.
[7] Littauer E L, Tsai K C. Corrosion of lithium in alkaline-solution[J]. Journal of the Electrochemical Society, 1977, 124(6): 850-855.
[8] Bruce P G, Hardwick L J, Abraham K M. Lithium-air and lithium-sulfur batteries[J]. MRS Bulletin, 2011, 36(7): 506-512.
[9] Freunberger S A, Chen Y H, Drewett N E, et al. The lithium-oxygen battery with ether-based electrolytes[J]. Angewandte Chemie-International Edition, 2011, 50(37): 8609-8613.
[10] Lu Y C, Kwabi D G, Yao K P C, et al. The discharge rate capability of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2999-3007.
[11] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.
[12] Cui Y M, Wen Z Y, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897.
[13] Gallant B M, Mitchell R R, Kwabi D G, et al. Chemical and morphological changes of Li-O2 battery electrodes upon cycling[J]. Journal of Physical Chemistry C, 2012, 116(39): 20800-20805.
[14] Harding J R, Lu Y C, Tsukada Y, et al. Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications[J]. Physical Chemistry Chemical Physics, 2012, 14(30): 10540-10546.
[15] McCloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: Some implications for Li-air batteries[J]. Journal of Physical Chemistry C, 2012, 116(45): 23897-23905.
[16] Laoire C O, Mukerjee S, Abraham K M, et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. Journal of Physical Chemistry C, 2010, 114(19): 9178-9186.
[17] Xu D, Wang Z L, Xu J J, et al. Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries[J]. Chemical Communications, 2012, 48(55): 6948-6950.
[18] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[19] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature Chemistry, 2013, 5(6): 489-494.
[20] Thotiyl M M O, Freunberger S A, Peng Z Q, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11): 1049-1055.
[21] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4(7): 579-585.
[22] Jung H G, Kim H S, Park J B, et al. A Transmission electron microscopy study of the electrochemical process of lithium-oxygen cells[J]. Nano Letters, 2012, 12(8): 4333-4335.
[23] Hassoun J, Jung H G, Lee D J, et al. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries[J]. Nano Letters, 2012, 12(11): 5775-5779.
[24] Jung H G, Jeong Y S, Park J B, et al. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013, 7(4): 3532-3539.
[25] Li F J, Zhang T, Yamada Y, et al. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes[J]. Advanced Energy Materials, 2013, 3(4): 532-538.
[26] Lim H D, Park K Y, Gwon H, et al. The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte[J]. Chemical Communications, 2012, 48(67): 8374-8376.
[27] Zhai D Y, Wang H H, Yang J B, et al. Disproportionation in Li-O2 batteries based on a large surface area carbon cathode[J]. Journal of the American Chemical Society, 2013, 135(41): 15364-15372.
[28] Guo Z Y, Dong X L, Yuan S Y, et al. Humidity effect on electrochemical performance of Li-O2 batteries[J]. Journal of Power Sources, 2014, 264: 1-7.
[29] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of the Electrochemical Society, 1996, 143(1): 1-5.
[30] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4): 1390-1393.
[31] Peng Z Q, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie-International Edition, 2011, 50(28): 6351-6355.
[32] Leskes M, Moore A J, Goward G R, et al. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy[J]. Journal of Physical Chemistry C, 2013, 117(51): 26929-26939.
[33] Zhang W, Duchesne P N, Gong Z L, et al. In situ electrochemical XAFS studies on an iron fluoride high-capacity cathode material for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2013, 117(22): 11498-11505.
[34] Hutchings G S, Rosen J, Smiley D, et al. Environmental in situ X-ray absorption spectroscopy evaluation of electrode materials for rechargeable lithium-oxygen batteries[J]. Journal of Physical Chemistry C, 2014, 118(24): 12617-12624.
[35] Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J]. Journal of Power Sources, 2010, 195(1): 358-361.
[36] He P, Wang Y G, Zhou H S. A Li-air fuel cell with recycle aqueous electrolyte for improved stability[J]. Electrochemistry Communications, 2010, 12(12): 1686-1689.
[37] He P, Wang Y G, Zhou H S. The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes[J]. Journal of Power Sources, 2011, 196(13): 5611-5616.
[38] Zhou H S, Wang Y G, Li H Q, et al. The development of a new type of rechargeable batteries based on hybrid electrolytes[J]. ChemSusChem, 2010, 3(9): 1009-1019.
[39] Wang Y G, Zhou H S. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism[J]. Chemical Communications, 2010, 46(34): 6305-6307.
[40] He P, Wang Y G, Zhou H S. Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution[J]. Chemical Communications, 2011, 47(38): 10701-10703.
[41] Wang Y R, Ohnishi R H, Yoo E, et al. Nano- and micro-sized TiN as the electrocatalysts for ORR in Li-air fuel cell with alkaline aqueous electrolyte[J]. Journal of Materials Chemistry, 2012, 22(31): 15549-15555.
[42] Wang Y R, Wang Y G, Zhou H S. A Li-liquid cathode battery based on a hybrid electrolyte[J]. ChemSusChem, 2011, 4(8): 1087-1090.
[43] Lu Y H, Goodenough J B. Rechargeable alkali-ion cathode-flow battery[J]. Journal of Materials Chemistry, 2011, 21(27): 10113-10117.
[44] Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694.
[45] Lu Y H, Goodenough J B, Kim Y. Aqueous cathode for next-generation alkali-ion batteries[J]. Journal of the American Chemical Society, 2011, 133(15): 5756-5759.
[46] Wang Y R, He P, Zhou H S. Li-redox flow batteries based on hybrid electrolytes: At the cross road between Li-ion and redox flow batteries[J]. Advanced Energy Materials, 2012, 2(7): 770-779.
[47] Girishkumar G, McCloskey B, Luntz A C, et al. Lithium - air battery: Promise and challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203.
[48] Li F J, Kitaura H, Zhou H S. The pursuit of rechargeable solid-state Li-air batteries[J]. Energy & Environmental Science, 2013, 6(8): 2302-2311.
[49] Kitaura H, Zhou H S. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials, 2012, 2(7): 889-894.
[50] Kitaura H, Zhou H S. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode[J]. Energy & Environmental Science, 2012, 5(10): 9077-9084.
[51] Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution - rotating ring-Pt(Hkl) disk studies[J]. Journal of Physical Chemistry, 1995, 99(11): 3411-3415.
[52] Wu W(武巍), Tian Y Y(田艳艳), Gao J(高军), et al. Application of carbon materials in lithium-air battery and its development[J]. Chinese Journal of Power Sources(电源技术), 2012, 136(4): 581-586.
[53] Jian Z L, Liu P, Li F J, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2014, 53(2): 442-446.
[54] Yoo E, Zhou H S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts[J]. Acs Nano, 2011, 5(4): 3020-3026.
[55] Li F J, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.
[56] Zhang T, Zhou H S. A reversible long-life lithium-air battery in ambient air[J]. Nature Communications, 2013, 4: Article number: 1817.
[57] Jiao F, Bruce P G. Mesoporous crystalline beta-MnO2- a reversible positive electrode for rechargeable lithium batteries[J]. Advanced Materials, 2007, 19(5): 657-660.
[58] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-222.
[59] Lu Y C, Gasteiger H A, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries[J]. Journal of the American Chemical Society, 2011, 133(47): 19048-19051.
[60] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[61] Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497.
[62] Lu Y C, Gasteiger H A, Parent M C, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries[J]. Electrochemical and Solid State Letters, 2010, 13(6): A69-A72.
[63] Zhang J L, Vukmirovic M B, Xu Y, et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angewandte Chemie-International Edition, 2005, 44(14): 2132-2135.
[64] Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery[J]. Electrochemistry Communications, 2009, 11(6): 1127-1130.
[65] Park J B, Lee J, Yoon C S, et al. Ordered mesoporous carbon electrodes for Li-O2 batteries[J]. Acs Applied Materials & Interfaces, 2013, 5(24): 13426-13431.
[66] Mitchell R R, Gallant B M, Thompson C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2952-2958.
[67] Zhang T, Zhou H S. From Li-O2 to Li-air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen[J]. Angewandte Chemie-International Edition, 2012, 51(44): 11062-11067.
[68] Xu J J, Wang Z L, Xu D, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4: Article number: 2438.
[69] Sun B, Munroe P, Wang G X. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Scientific Reports, 2013, 3: Article number: 2247.
[70] Lu J, Cheng C, Lau K C, et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries[J]. Nature Communications, 2014, 5: Article number: 4895.
[71] Debart A, Paterson A J, Bao J, et al. -MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2008, 47(24): 4521-4524.
[72] Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nature Chemistry, 2012, 4(12): 1004-1010.
[73] Xu J J, Xu D, Wang Z L, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries[J]. Angewandte Chemie-International Edition, 2013, 52(14): 3887-3890.
[74] Li F J, Tang D M, Chen Y, et al. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano Letters, 2013, 13(10): 4702-4707.
[75] Li F J, Tang D M, Jian Z L, et al. Li-O2 battery based on highly efficient Sb-doped Tin oxide supported Ru nanoparticles[J]. Advanced Materials, 2014, 26(27): 4659-4664.
[76] Tong S F, Zheng M B, Lu Y, et al. A binder-free carbonized bacterial cellulose supported ruthenium nanoparticles for Li-O2 battery[J]. Chemical Communications, 2015, 51, 7302-7304.
[77] Debart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[78] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2013, 52(1): 392-396.
[79] Shui J L, Karan N K, Balasubramanian M, et al. Fe/N/C composite in Li-O2 battery: Studies of catalytic structure and activity toward oxygen evolution reaction[J]. Journal of the American Chemical Society, 2012, 134(40): 16654-16661.
[80] Wu D F, Guo Z Y, Yin X B, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Advanced Materials, 2014, 26(20): 3258-3262.
[81] Lim H D, Song H, Kim J, et al. Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst[J]. Angewandte Chemie-International Edition, 2014, 53(15): 3926-3931.
[82] Lacey M J, Frith J T, Owen J R. A redox shuttle to facilitate oxygen reduction in the lithium air battery[J]. Electrochemistry Communications, 2013, 26: 74-76.
[83] Yu M Z, Ren X D, Ma L, et al. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium - oxygen battery for photoassisted charging[J]. Nature Communications, 2014, 5: Article number: 5111.
[84] Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries[J]. Journal of the American Chemical Society, 2014, 136(25): 8941-8946.
[85] Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73.
[86] Laoire C O, Mukerjee S, Plichta E J, et al. Rechargeable lithium/TEGDME-LiPF6/O2 battery[J]. Journal of the Electrochemical Society, 2011, 158(3): A302-A308.
[87] Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J]. Journal of the Electrochemical Society, 2003, 150(10): A1351-A1356.
[88] McCloskey B D, Bethune D S, Shelby R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery eectrochemistry[J]. Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166.
[89] Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047.
[90] Gunasekara I, Mukerjee S, Plichta E J, et al. Microelectrode diagnostics of lithium-air batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A381-A392.
[91] Herranz J, Garsuch A, Gasteiger H A. Using rotating ring disc electrode voltammetry to quantify the speroxide radical stability of aprotic Li-air battery Electrolytes[J]. Journal of Physical Chemistry C, 2012, 116(36): 19084-19094.
[92] Zhang T, Imanishi N, Shimonishi Y, et al. A novel high energy density rechargeable lithium/air battery[J]. Chemical Communications, 2010, 46(10): 1661-1663.