[1]Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.
[2]Chen J, Cheng F Y. Combination of lightweight elements and nanostructured materials for batteries[J]. Accounts of Chemical Research, 2009, 42(6): 713-723.
[3]Fan X Y, Li Y, Wang J J, et al. Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries[J]. Journal of Alloys and Compounds, 2010, 493(1/2): 77-80.
[4]Zhang Q M(张秋美), Shi Z C(施志聪),Li Y X(李益孝),et al. Recent advances in fluorophosphates and orthosilicate cathode materials for lithium ion batteries[J]. Acta Physico-Chimica Sinica(物理化学学报),2011, 27(2): 267-274.
[5]Cheng F Y, Liang J, Tao Z L, et al. Functional materials for rechargeable batteries[J]. Advanced Materials, 2011, 23(15): 1695-1715.
[6]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[7]Gao Y, Li L, Peng H, et al. Surfactant-assisted sol-gel synthesis of nanostructured ruthenium-doped lithium iron phosphate as a cathode for lithium-ion batteries[J]. ChemElectroChem, 2014, 1(12): 2146-2152.
[8]Wang J, Sun X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1): 5163-5185.
[9]Gao M X(高明霞), Wang J H(王军华), Ye X(叶欣), et al. Synergetic effect of the crystallinity, particle size of LiFePO4 and thein-situintroduced Fe2p on its high-rate capability[J]. Chinese Science Bulletin (科学通报), 2013, 58(32): 3328.
[10]Shang H F(尚怀芳), Huang W F(黄伟峰), Chu W S(储旺盛), et al. Surface composition structure and electrochemical performance of aluminum doped LiFePO4[J]. Journal of Electrochemistry(电化学), 2013, 19(6): 558-564.
[11]Li C S, Zhang S Y, Cheng F Y, et al. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium-ion batteries[J]. Nano Research, 2008, 1(3): 242-248.
[12]Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50.
[13]Wang D Y, Li H, Shi S Q, et al. Improving the rate performance of LiFePO4 by Fe-Site doping[J]. Electrochimica Acta, 2005, 50(14): 2955-2958.
[14]Rong B H, Lu Y W, Liu X W, et al. Fabrication and characteristics of nano LiFePO4/C composites with high capacity and high rate using nano Fe2O3 as raw materials[J]. Nano Energy, 2014, 6: 173-179.
[15]Wang M E(王明娥), Liu J Y(刘敬源), Hou M Y(侯孟炎), et al. Preparation of the particle size controllable LiFePO4/C and its electrochemical profile characterization[J]. Journal of Electrochemistry(电化学), 2013, 19(6): 550-557.
[16]Cheng F Q, Wan W, Tan Z, et al. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction[J]. Electrochimica Acta, 2011, 56(8): 2999-3005.
[17]Zhang S S, Allen J L, Xu K, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J]. Journal of Power Sources, 2005, 147(1/2): 234-240.
[18]Dong Y Z, Zhao Y M, Chen Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics, 2009, 115(1): 245-250.
[19]Wang Y G, Wang Y R, Hosono E, et al. The design of a LiFePO4/ carbon nanocomposite with a core-shell structure and its synthesis by an in-situ polymerization restriction method[J]. Angewandte Chemie International Edition, 2008, 47(39): 7461-7465.
[20]Huang Y D, Wang L, Jia D Z, et al. Preparation and electrochemical properties of LiFePO4/C nanoparticles using different organic carbon sources[J]. Journal of Nanoparticle Research, 2013, 15(2): 1-5.
[21]Xie G, Zhu H J, Liu X M, et al. A core-shell LiFePO4/C nanocomposite prepared via a sol-gel method assisted by citric acid[J]. Journal of Alloys and Compounds, 2013, 574: 155-160.
[22]Wang F Q, Chen J, Wu M, et al. Propylene oxide-assisted fast sol-gel synthesis of mesoporous and nano-structured LiFePO4/C cathode materials[J]. Ionics, 2013, 19(3): 451-460.
[23]Liang G C, Wang L, Ou X Q, et al. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution[J]. Journal of Power Sources, 2008, 184(2): 538-542.
[24]Deng H, Jin S, Zhan L, et al. Nest-like LiFePO4/C architectures for high performance lithium ion batteries[J]. Electrochimica Acta, 2012, 78: 633-637.
[25]Murugan A V, Muraliganth T, Manthiram A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2008, 112(37): 14665-14671.
[26]Konstantinov K, Bewlay S, Wang G X, et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials[J]. Electrochimica Acta, 2004, 50(2/3): 421-426.
[27]Ju S H, Kang Y C. LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black[J]. Materials Chemistry and Physics, 2008, 107(2/3): 328-333.
[28]Lv Y J, Long Y F, Su J, et al. Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 119: 155-163.
[29]Yu F, Lim S H, Zhen Y D, et al. Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis[J]. Journal of Power Sources, 2014, 271: 223-230.
[30]Yang M R, Teng T H, Wu S H, et al. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159(1): 307-311.
[31]Chen Z, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. Journal of the Electrochemical Society, 2002, 149(9): A1184-A1189.
[32]Ni J F, Zhou H H, Chen J T, et al. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles[J]. Materials Letters, 2007, 61(4/5): 1260-1264.
[33]Wang K, Cai R, Yuan T, et al. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source[J]. Electrochimica Acta, 2009, 54(10): 2861-2868.
[34]Chen Z Y, Zhu H L, Ji S, et al. Influence of carbon sources on electrochemical performances of LiFePO4/C composites[J]. Solid State Ionics, 2008, 179(27/32): 1810-1815.
[35]Wang J, Shao Z B, Ru H Q. Influence of carbon sources on LiFePO4/C composites synthesized by the high-temperature high-energy ball milling method[J]. Ceramics International, 2014, 40(5): 6979-6985.
[36]Cheng L F, Liang G X, El Khakani S, et al. Low cost synthesis of LiFePO4/C cathode materials with Fe2O3[J]. Journal of Power Sources, 2013, 242: 656-661.
[37]Zhang D, Yu X, Wang Y F, et al. Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor[J]. Journal of the Electrochemical Society, 2009, 156(10): A802-A808.
[38]Yan X D, Yang G L, Liu J, et al. An effective and simple way to synthesize LiFePO4/C composite [J]. Electrochimica Acta, 2009, 54(24): 5770-5774.
[39]Zhang Y, Feng H, Wu X B, et al. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4[J]. Electrochimica Acta, 2009, 54(11): 3206-3210.
[40]Zhang P(张鹏), Kong L B(孔令斌), Luo Y C(罗永春), et al. A facile approach to prepare LiFePO4/C composite with high-rate performance[J]. Journal of Electrochemistry(电化学), 2012, 18(4): 337-341.
[41]Nien Y H, Carey J R, Chen J S. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors[J]. Journal of Power Sources, 2009, 193(2): 822-827.
[42]Liu H, Li C, Zhang H P, et al. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique[J]. Journal of Power Sources, 2006, 159(1): 717-720.
[43]Wu, X L, Guo, Y G, Su J, et al. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries[J]. Advanced Energy Materials, 2013, 3(9): 1155-1160.
[44]Chen R R, Wu Y X, Kong X Y. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries[J]. Journal of Power Sources, 2014, 258: 246-252.
[45]Chen J M, Hsu C H, Lin Y R, et al. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 498-502.
[46]Liu J, Wang J W, Yan X D, et al. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications[J]. Electrochimica Acta, 2009, 54(24): 5656-5659.
[47]Wang Y G, He P, Zhou H S. Olivine LiFePO4: Development and future[J]. Energy & Environmental Science, 2011, 4(3): 805-817.
[48]He P, Liu J L, Cui, W J, et al. Investigation on capacity fading of LiFePO4 in aqueous electrolyte[J]. Electrochimica Acta, 2011, 56(5): 2351-2357.