欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

二元析氧催化剂CoxCr1-xO3/2的制备及性能研究

  • 杨太来 ,
  • 董文燕 ,
  • 杨慧敏 ,
  • 张力 ,
  • 梁镇海
展开
  • 太原理工大学化学化工学院,山西 太原 030024

收稿日期: 2014-10-30

  修回日期: 2015-01-04

  网络出版日期: 2015-04-23

基金资助

国家自然科学基金委员会与神华集团有限责任公司联合项目(No. U1261103)资助

Preparation and Properties of Binary Oxides CoxCr1-xO3/2 Electrocatalysts for Oxygen Evolution Reaction

  • YANG Tai-Lai ,
  • DONG Wen-Yan ,
  • YANG Hui-Min ,
  • ZHANG Li ,
  • LIANG Zhen-Hai
Expand
  • College of Chemistry and Chemical Eegineering, Taiyuan University of Technology, Taiyuan 030024, China

Received date: 2014-10-30

  Revised date: 2015-01-04

  Online published: 2015-04-23

摘要

用热分解法制得不同混合比例的二元金属氧化物催化剂CoxCr1-xO3/2(x = 0,0.2,0.4,0.6,0.8,1),使用SEM、XRD和XPS观察表征催化剂形貌、晶型和价态,使用线性扫描伏安、阶梯波伏安和恒电位测试电极活性、过电位和稳定性. 结果表明,该Co3O4和绿铬矿型Cr2O3混合物形成固溶体CoxCr1-xO3/2. x = 0.2时,Co0.2Cr0.8O3/2电极性能较单一Co3O4和Cr2O3电极好,在高电位(1.0 V vs. Ag/AgCl),其电流强度是Co3O4的3.75倍,Cr2O3的15.2倍,其过电位(η = 0.0703 V)也较Co3O4(η = 0.6109 V)和Cr2O3(η = 0.435 V)小,催化性能最好,在强碱性溶液(pH=13)中有良好的稳定性.

本文引用格式

杨太来 , 董文燕 , 杨慧敏 , 张力 , 梁镇海 . 二元析氧催化剂CoxCr1-xO3/2的制备及性能研究[J]. 电化学, 2015 , 21(2) : 187 -192 . DOI: 10.13208/j.electrochem.141030

Abstract

Binary metal mixed oxides of Co and Cr with nominal compositional formulas, CoxCr1-xO3/2 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0), were obtained by thermal decomposition method. The morphologies, crystal forms and valence states of the catalyst powders were analyzed by SEM, XRD and XPS, respectively. And the electrochemical properties, overpotentials and stabilities of CoxCr1-xO3/2 electrodes for oxygen evolution reaction (OER) in an alkaline solution were evaluated by linear sweep voltammetry (LSV), staircase voltammetry and chronoamperometry, respectively. The results indicated that the mixtures of Co3O4 and eskolaite-Cr2O3 formed solid solutions of CoxCr1-xO3/2. When x=0.2, the electrocatalytic performance of Co0.2Cr0.8O3/2 catalyst was better than those of Co3O4 and Cr2O3. At high potential region (1.0 V vs. Ag/AgCl), the current density of Co0.2Cr0.8O3/2 catalyst was 3.75 times higher than that of Co3O4 and 15.2 times higher than that of Cr2O3. Furthermore, the overpotential of Co0.2Cr0.8O3/2 catalyst (η = 0.0703 V at a current density of 1×10-3 A·cm-2) was much lower than those of Co3O4 (η = 0.6109 V) and Cr2O3 (η = 0.4350 V), showing the best electrocatalytic property. In addition, the Co0.2Cr0.8O3/2 catalyst had good stability in strong alkaline solution (pH = 13) during OER process.

参考文献

[1] Zhuo J Q, Wang T Y, Zhang G, et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: Surprising catalytic performance in the hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2013, 125(10): 11067-11070.
[2] Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. Journal of the American Chemical Society, 2013, 135(9): 13521-13530.
[3] Robinson D M, Go Y B, Mui M, et al. Photochemical water oxidation by crystalline polymorphs of manganese oxides: Structural requirements for catalysis[J]. Journal of the American Chemical Society, 2013, 135(3): 3491-3501.
[4] Zhuang Z B, Sheng W C, Yan Y S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction[J]. Advanced Materials, 2014, 26(6): 3950-3955.
[5] Grewe T, Deng X H, Weidenthaler C, et al. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation[J]. Chemistry of Materials, 2013, 25(12): 4926-4935.
[6] Liu X J, Chang Z, Luo L, et al. Hierarchical ZnxCo3-xO4 nanoarrays with high activity for electrocatalytic oxygen evolution[J]. Chemistry of Materials, 2014, 26(3): 1889-1895.
[7] Bai B Y, Arandiyan H, Li J H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142(10): 677-683.
[8] Cruz-Espinoza A, Ibarra-Galván V, López-Valdivieso A, et al. Synthesis of microporous eskolaite from Cr(VI) using activated carbon as a reductant and template[J]. Journal of Colloid and Interface Science, 2012, 374(5): 321-324.
[9] Zhang Y M, Yang S, Evans J R G. Revisiting Hume-Rothery’s rules with artificial neural networks[J]. Acta Materialia, 2008, 56(3): 1094-1105.
[10] Chen Z L, Chen S H, Li Y H, et al. A recyclable and highly active Co3O4 nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate[J]. Materials Research Bulletin, 2014, 57(9): 170-176.
[11] Gao S J, Dong C F, Luo H, et al. Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on Co3O4 stainless steel by magnetron sputtering[J]. Electrochimica Acta, 2013, 114(12): 233-241.
[12] Keav S, Lu Y, Matam S K, et al. Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst[J]. Applied Catalysis A: General, 2014, 469(1): 259-266.
[13] Li X B, Yang S W, Sun J, et al. Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite[J]. Synthetic Metals, 2014, 194(8): 52-58.
[14] Wu Z S, Ren W C, Wen L, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures[J]. ACS Nano, 2010, 4(2): 3187-3194.
[15] Chen S, Zhai T, Lu X H, et al. Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2012, 37(9): 13350-13354.
[16] Zou X X, Goswami A, Asefa T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. Journal of the American Chemical Society, 2013, 135(11): 17242-17245.
[17] Zhao Q, Yu Z B, Yuan W, et al. Metal-Ci oxygen-evolving catalysts generated in situ in a mild H2O/CO2 environment[J]. International Journal of Hydrogen Energy, 2013, 38(5): 5251-5258.
[18] Yu Z B, Zhao Q, Hao G Y, et al. A mild H3BO3 environment for water splitting[J]. International Journal of Hydrogen Energy, 2013, 38(8): 10191-10195.
[19] Zhao Q, Yu Z B, Yuan W, et al. A WO3/Ag-Bi oxygen-evolution catalyst for splitting water under mild conditions[J]. International Journal of Hydrogen Energy, 2012, 37(9): 13249-13255.
[20] Wang W, Zhao Q, Dong J X, et al. A novel silver oxides oxygen evolving catalyst for water splitting[J]. International Journal of Hydrogen Energy, 2011, 36(7): 7374-7380.
[21] Xu C W, Wang H, Shen P K, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Advanced Materials, 2007, 19 (13): 4256-4259.
文章导航

/