欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授)

锂空气电池高容量长寿命Co3O4纳米空心球阴极催化剂

  • 刘通 ,
  • 李娜 ,
  • 刘清朝 ,
  • 张新波
展开
  • 1. 中国科学院长春应用化学研究所,稀土国家重点实验室,吉林 长春 130022;2. 中国科学院大学,北京 100049;3. 吉林大学材料科学与工程学院,吉林 长春 130012

收稿日期: 2014-11-03

  修回日期: 2015-02-01

  网络出版日期: 2015-04-23

基金资助

基金委优青(No. 21422108)资助

Porous Co3O4 Hollow Nanospheres Cathode Catalyst for High-capacity and Long-cycle Li-Air Batteries

  • LIU Tong ,
  • LI Na ,
  • LIU Qing-Chao ,
  • ZHANG Xin-Bo
Expand
  • 1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Materials Science and Engineering, Jilin University, Changchun 130012, China

Received date: 2014-11-03

  Revised date: 2015-02-01

  Online published: 2015-04-23

摘要

以六水合硝酸钴(Co(NO3)2·6H2O)、六次甲基四胺(HMT)、蔗糖、柠檬酸钠(Na3C6H5O7)为原料,140 oC下水热碳化处理即得反应前驱物,经煅烧处理后,可得多孔Co3O4纳米空心球. 锂空气电池Co3O4/SP阴极催化剂具有优异的循环寿命性能,这归因于Co3O4空心球的纳米颗粒构成、较高比表面积的多孔结构,为电池反应提供了大量的反应位点,为充放电产物提供了足够的存储空间.

本文引用格式

刘通 , 李娜 , 刘清朝 , 张新波 . 锂空气电池高容量长寿命Co3O4纳米空心球阴极催化剂[J]. 电化学, 2015 , 21(2) : 157 -161 . DOI: 10.13208/j.electrochem.141049

Abstract

In this paper, a high specific surface area of porous Co3O4 hollow nanospheres was successfully synthesized via hydrothermal carbonization at 140 oC, followed by calcination using cobalt nitrate hexahydrate (Co(NO3)2·6H2O), hexamethylenetetramine (HMT), sucrose, and sodium citrate (Na3C6H5O7). The porous Co3O4 hollow nanospheres consisted of nanoparticles with high specific surface area of mesoporous structure, and could provide active reaction sites for OER and ORR. When used as lithium-air battery cathode catalyst, the Co3O4/Super P (SP) electrode exhibited excellent cycle performance, resulting in high capacity and long life of lithium-air batteries.

参考文献

[1] Abraham K M. A brief history of non-aqueous metal-air batteries[J]. ECS Transactions, 2008, 3(42): 67-71.
[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652- 657.
[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29.
[4] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries[J]. Journal of the Electrochemical Society, 2011, 159(2): R1-R30.
[5] Zhang L L, Zhang X B, Wang Z L, et al. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous Lithium-oxygen batteries[J]. Chemical Communications, 2012, 48(61): 7598-7600.
[6] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 125(1): 410-414.
[7] Gao J, Wu W, Tian Y Y, et al. The electrocatalytic study of LiCoO2 in air electrode[J]. Journal of Electrochemistry, 2012, 18(1): 14-17.
[8] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.
[9] Dong S, Chen X, Zhang K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries[J]. Chemical Communications, 2011, 47(40): 11291-11293.
[10] Chen Y, Freunberger S A, Peng Z, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature chemistry, 2013, 5(6): 489-494.
[11] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[12] Jian Z, Liu P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 Batteries[J]. Angewandte Chemie International Edition, 2014, 53(2): 442-446.
[13] Lu Y C, Xu Z, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[14] Wang Z L, Xu D, Xu J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.
[15] Cui Y, Wen Z, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897.
[16] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.
[17] Débart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[18] Garsuch R R, Le D B, Garsuch A, et al. Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2008, 155(10): A721-A724.
[19] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.
[20] Shui J L, Okasinski J S, Kenesei P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature communications, 2013, 4: 2255.
[21] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.
[22] Yilmaz E, Yogi C, Yamanaka K, et al. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles[J]. Nano letters, 2013, 13(10): 4679-4684.
[23] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.
文章导航

/