欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授)

锂离子电池富锂锰基正极材料的研究进展

  • 周罗增 ,
  • 徐群杰 ,
  • 汤卫平 ,
  • 靳雪 ,
  • 袁小磊
展开
  • 1. 上海市电力材料防护与新材料重点实验室,上海电力学院,上海 200090;2. 上海空间电源研究所,上海 200245

收稿日期: 2014-10-24

  修回日期: 2014-12-18

  网络出版日期: 2014-12-31

基金资助

上海市自然科学基金项目(No. 15ZR1418100)和上海市企业自主创新专项项目(No. CXY-2014-24)资助

Research Progress of Mn-based Lithium-rich Cathode Materials for Li-ion Batteries

  • ZHOU Luo-Zeng ,
  • XU Qun-Jie ,
  • TANG Wei-Ping ,
  • JIN Xue ,
  • YUAN Xiao-Lei
Expand
  • 1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China; 2. Shanghai Institute of Space Power-sources, Shanghai 200245, China

Received date: 2014-10-24

  Revised date: 2014-12-18

  Online published: 2014-12-31

摘要

随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.

本文引用格式

周罗增 , 徐群杰 , 汤卫平 , 靳雪 , 袁小磊 . 锂离子电池富锂锰基正极材料的研究进展[J]. 电化学, 2015 , 21(2) : 138 -144 . DOI: 10.13208/j.electrochem.141042

Abstract

With rapid development of new energy industry like electric vehicles and energy storage station, these fields highly demand the next generation of high performance Li-ion battery systems with stronger energy density, higher power density, and longer cycling life. Lithium-rich Mn-based cathode materials, xLi2MnO3·(1-x)LiMO2(M=Mn, Co, Ni...), have become the hot topic and drawn attentions of scholars worldwide because of their high reversible capacity exceeding 240 mAh·g-1, excellent electrochemical properties, and low cost, which makes them most promising cathode material candidates for next Li-ion battery system. The cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 prepared in our laboratory shows high initial discharge capacity of 277.3 mAh·g-1 with retention of 98.4% after 50 cycles. Based on our previous works, we have introduced and reviewed the structures, preparation methods, and charge/discharge mechanisms of these lithium-rich Mn-based cathode materials xLi2MnO3·(1-x)LiMO2.

参考文献

[1] Nagaura T, Tozawa K. Lithium ion rechargeable battery[J]. Progress in Batteries and Solar Cells, 1990, 9(2): 209-217.
[2] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[3] Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications[J]. Nano Letters, 2011, 11(2): 414-418.
[4] Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 7: 642-643.
[5] Jiang K C, Xin S, Lee J S, et al. Improved kinetics of LiNi1/3Co1/3Mn1/3O2 cathode material through reduced graphene oxide networks[J]. Physical Chemistry Chemical Physics, 2012, 14(8): 2934-2939.
[6] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
[7] Li J, Klopsch R, Stan M C, et a1. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability[J]. Journal of Power Sources, 2011, 196(10): 4821-4825.
[8] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
[9] Park K S, Cho M H, Jin S J, et al. Structural and electrochemical properties of nanosize layered Li(Li1/5Ni1/10Co1/5Mn1/2)O2[J]. Electrochemical and Solid-State Letters, 2004, 7(8): A239-A241.
[10] Martha S K, Nanda J, Veith G M, et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 199: 220-226.
[11] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Material Chemistry, 2007, 17(30): 3112-3125.
[12] Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3[J]. Journal of Power Sources, 2009, 189(1): 798-801.
[13] Zhang J(张洁), Wang J L(王久林), Yang J(杨军). Progress of lithium rich cathode materials for Li-ion batteries[J]. Journal of Electrochemistry(电化学), 2008, 14(4): 398-401.
[14] Johnson C S, Li N, Thackeray M M, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C[J]. Electrochemistry Communication, 2007, 9(4): 787-795.
[15] Arunkumar T A, Wu Y, Manthiram A. Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2·LiMO2 (M = Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions[J]. Chemistry of Materials, 2007, 19(12): 3067-3073.
[16] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 [J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
[17] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
[18] Toprakci O, Li Y, Zhang X W, et al. Synthesis and characterization of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2013, 241: 522-528.
[19] Zhou L Z, Xu Q J, Liu M S, et al. Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries[J]. Solid State Ionics, 2013, 249: 134-138.
[20] Xiang Y H, Yin Z L, Zhang Y H, et al. Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the solid-state method[J]. Electrochimica Acta, 2013, 91: 214-218.
[21] Jin X, Xu Q J, Zhou L Z, et al. Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 114: 605-610.
[22] Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. Journal of Power Sources, 2009, 191(2): 644-647.
[23] Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1): 84-86.
[24] Song J H, Tang W P, Xie J Y. Surface modification of Mn-based Li-rich cathode material by AlPO4 for high energy lithium-ion battery[C]//The 16th International Meeting on Lithium Batteries (IMLB), ICC, Jeju, Korea, 2012.
[25] Wei X, Zhang S C, Du Z J, et al. Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method[J]. Electrochimica Acta, 2013, 107: 549-544.
[26] Liu B, Zhang Q, He S, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4[J]. Electrochimica Acta, 2011, 56(19): 6748-6751.
[27] He W, Qian J, Cao Y, et al. Improved electrochemical performances of nano-crystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Advances, 2012, 2(8): 3423-3429.
[28] Croy J R, Kang S H, Balasubramanian M, et al. Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10): 1063-1066.
[29] Lee Y J, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material[J]. Nano Letters, 2008, 8(3): 957-961.
[30] Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J]. Chemical Communications, 2009, 2: 218-220.
[31] Son M Y, Hong Y J, Choi S H, et al. Effects of ratios of Li2MnO3 and Li(Ni1/3Mn1/3Co1/3)O2 phases on the properties of composite cathode powders in spray pyrolysis[J]. Electrochimica Acta, 2013, 103: 110-118.
[32] Park J H, Lim J, Kim J, et al. The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2·0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material[J]. Dalton Transactions, 2012, 41(10): 3053-3059.
[33] Hwang S Y, Chang W Y, Stach E A, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chemistry of Materials, 2014, 26(2): 1084-1092.
[34] He W, Yuan D D, Cao Y L, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material[J]. Journal of Materials Chemistry A, 2013, 1(37): 11397-11403.
[35] Song B H, Lai M O, Lu L. Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries[J]. Electrochimica Acta, 2012, 80: 187-195.
[36] Zheng J M, Wu X B, Yang Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation[J]. Electrochimica Acta, 2013, 105: 200-208.
[37] Jin X, Xu Q J, Liu H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
[38] Sun Y K, Yoon C S, Scrosati B, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9): 1192-1196.
[39] Wang Q Y, Liu J, Manthiram A, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009, 19: 4965-4972.
[40] Kang S H, Thackeray M M. Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by LiNiPO4 treatment[J]. Electrochemistry Communications, 2009, 11(4): 748-751.
[41] West W C, Soler J, Manthiram A, et al. Electrochemical behavior of layered solid solution Li2MnO3·LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings[J]. Journal of The Electrochemical Society, 2011, 158(8): A883-A889.
[42] Wang Z Y, Liu E Z, Zhao N Q, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2013, 236: 25-32.
[43] Xu G F, Li J L, Xue Q R, et al. Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method[J]. Electrochimica Acta, 2014, 117: 41-47.
[44] Liu J, Manthiram A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010, 20(19): 3961-3967.
[45] Wang F X, Wu Y P, Holze R, et al. Coaxial LiCoO2@Li2MnO3 nanoribbon as a high capacity cathode for lithium ion batteries[J]. International Journal of Electrochemical Science, 2014, 9(11): 6182-6190.
文章导航

/