欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授)

燃料电池非铂基氧还原电催化剂的最新研究进展

  • 宋平 ,
  • 阮明波 ,
  • 刘京 ,
  • 冉光钧 ,
  • 徐维林
展开
  • 1. 中国科学院长春应用化学研究所,电分析国家重点实验室,吉林 长春 130022;2. 中国科学院长春应用化学研究所,吉林省低碳化学能源重点实验室,吉林 长春 130022

收稿日期: 2014-10-10

  修回日期: 2014-11-20

  网络出版日期: 2015-01-15

基金资助

国家重点基础研究发展计划(No. 2012CB932800,No. 2014CB932700),国家自然科学基金项目(No. 21273220,No. 21073180)

Recent Research Progress for Non-Pt-Based Oxygen Reduction Reaction Electrocatalysts in Fuel Cell

  • SONG Ping ,
  • RUAN Ming-Bo ,
  • LIU Jing ,
  • RAN Guang-Jun ,
  • XU Wei-Lin
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Science, Changchun 130022, China; 2. Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China

Received date: 2014-10-10

  Revised date: 2014-11-20

  Online published: 2015-01-15

摘要

目前,燃料电池中广泛使用的Pt基阴极催化剂价格昂贵、资源缺乏,且易中毒,故急需开发廉价、耐用、高效和高耐醇的非铂基阴极氧还原催化剂. 本文阐述了国内外在非铂氧还原催化剂方面的研究,并着重介绍了作者课题组的最新研究进展. 主要集中在非贵金属(Fe)负载和杂原子(F)掺杂的非金属催化剂,力求原料廉价并可提高催化剂的催化活性、稳定性、抗毒化能力,实现较高的性价比. 同时通过理论计算解释了氟单掺杂和氮氟共掺杂高效性的根源,为设计高效催化剂提供了有力的理论支持.

本文引用格式

宋平 , 阮明波 , 刘京 , 冉光钧 , 徐维林 . 燃料电池非铂基氧还原电催化剂的最新研究进展[J]. 电化学, 2015 , 21(2) : 130 -137 . DOI: 10.13208/j.electrochem.141041

Abstract

The expensive Pt-based catalyst suffers from its susceptibility to time-dependent drift, methanol crossover, and carbon monoxide (CO) deactivation, which will block the large-scale commercial application of fuel cells. It is, therefore, necessary to develop efficient, low-cost, highly stable non-precious metal oxygen reduction reaction (ORR) catalysts with high catalytic performance. Here, we will pay attention to the research progress of non-precious metal and heteroatom-doped (N, B, P, S, F) metal-free ORR catalysts. Importantly, we mainly focus on the work developed by Xu’s group with the Fe-based non-precious metal and F/NF-doped metal-free ORR catalysts. The purpose of these works is to improve the activity and durability of the catalysts based on cheap materials and simple methods. Meanwhile, the combination of theoretical calculations in catalytic activity and mechanism will explain the origin of high activity, which will support strong theoretical foundation for experimental design in ORR catalysts with high performance in future.

参考文献

[1] Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy & Environmental Science, 2011, 4(4): 1238-1254.
[2] Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213.
[3] Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923): 71-74.
[4] Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
[5] Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of The American Chemical Society, 2013, 135(43): 16002-16005.
[6] Wu Z S, Chen L, Liu J, et al. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Advanced Materials, 2014, 26(9): 1450-1455.
[7] Liu J, Sun X, Song P, et al. High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron[J]. Advanced Materials, 2013, 25(47): 6879-6883.
[8] Matter P H, Ozkan U S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte[J]. Catalysis letters, 2006, 109(3/4): 115-123.
[9] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
[10] Lee W J, Maiti U N, Lee J M, et al. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chemical Communications, 2014, 50(52): 6818-6830.
[11] Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566.
[12] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2011, 50(31): 7132-7135.
[13] Liu Z W, Peng F, Wang H J, et al. Phosphorus‐doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3257-3261.
[14] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of The American Chemical Society, 2012, 134(39): 16127-16130.
[15] Denis P A, Faccio R, Mombru A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. ChemPhysChem, 2009, 10(4): 715-722.
[16] Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2011, 6(1): 205-211.
[17] Chen L, Cui X, Wang Y, et al. One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions[J]. Dalton Transactions, 2014, 43(9): 3420-3423.
[18] Zhang Y, Chu M, Yang L, et al. Synthesis and oxygen reduction properties of three-dimensional sulfur-doped graphene networks[J]. Chemical Communications, 2014, 50(48): 6382-6385.
[19] Zhang L, Niu J, Li M, et al. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3545-3553.
[20] Wang S, Zhang L, Xia Z, et al. BCN Graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2012, 51(17): 4209-4212.
[21] Jin J, Pan F, Jiang L, et al. Catalyst-free synthesis of crumpled boron and nitrogen co-doped graphite layers with tunable bond structure for oxygen reduction reaction[J]. ACS Nano, 2014, 8(4): 3313-3321.
[22] Zhu J, Jiang S P, Wang R, et al. One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2(37): 15448-15453.
[23] Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
[24] Liu Z, Nie H, Yang Z, et al. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Nanoscale, 2013, 5(8): 3283-3288.
[25] Jeon I Y, Choi H J, Choi M, et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction[J]. Scientific Reports, 2013: 3.
[26] Sun X, Zhang Y, Song P, et al. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catalysis, 2013, 3(8): 1726-1729.
[27] Sun X, Song P, Chen T, et al. Fluorine-doped BP 2000: Highly efficient metal-free electrocatalysts for acidic oxygen reduction reaction with superlow H2O2 yield[J]. Chemical Communications, 2013, 49: 10296-10298.
[28] Sun X, Song P, Zhang Y, et al. A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks[J]. Scientific Reports, 2013, 3: 2505.
文章导航

/