欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授)

Li3Fe2(PO4)3/C正极材料的电化学性能及其反应机理研究

  • 谢勇 ,
  • 钟贵明 ,
  • 龚正良 ,
  • 杨勇
展开
  • 1. 厦门大学能源学院,福建 厦门 361005;2. 固体表面物理化学国家重点实验室,厦门大学化学化工学院,福建 厦门 361005

收稿日期: 2014-11-03

  修回日期: 2014-12-19

  网络出版日期: 2014-12-25

基金资助

国家重点基础研究发展计划(No. 2011CB935903)、国家自然科学基金项目(No. 21233004,No. 21303147)和福建省自然科学基金项目(No. 2014J05019)资助

Electrochemical Performance and Reaction Mechanism of Li3Fe2(PO4)3/C Cathode Material

  • XIE Yong ,
  • ZHONG Gui-Ming ,
  • GONG Zheng-Liang ,
  • YANG Yong
Expand
  • 1. College of Energy, Xiamen University, Xiamen 361005, Fujian, China; 2. State Key Lab of Physical Chemistry of Solid Surfaces, and College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2014-11-03

  Revised date: 2014-12-19

  Online published: 2014-12-25

摘要

采用溶胶凝胶及高能球磨制得Li3Fe2(PO4)3/C材料,利用多种物理及其电化学技术观察材料形貌,表征材料结构及电化学性能,用电化学原位XAFS等初步研究Li3Fe2(PO4)3/C超理论容量电化学反应机理. 结果显示,Li3Fe2(PO4)3/C的结构为单斜晶系,空间群P21/n. 2.0 ~ 4.0 V电位区间,10 mAh·g-1电流密度,Li3Fe2(PO4)3/C电极的首周期放电比容量为129 mAh·g-1,达到其理论容量. 若电位区间拓宽至2.0 ~ 4.95 V,其首周期放电比容量高达165 mAh·g-1,超出理论的“额外”容量30%. 电化学原位XAFS测试未观察到明显的Fe3+/Fe4+氧化还原对参与电化学反应,初步推测“额外”容量可能来自于该复合材料的高浓度表面缺陷.

本文引用格式

谢勇 , 钟贵明 , 龚正良 , 杨勇 . Li3Fe2(PO4)3/C正极材料的电化学性能及其反应机理研究[J]. 电化学, 2015 , 21(2) : 123 -129 . DOI: 10.13208/j.electrochem.141045

Abstract

The cathode material of carbon coated Li3Fe2(PO4)3 (Li3Fe2(PO4)3/C) is successfully prepared by sol-gel method and ball-milling carbon coating technique. The cathode material is characterized by XRD, SEM, TEM, and in-situ XAFS techniques. XRD results indicate that the as prepared Li3Fe2(PO4)3 is of high purity and single phase, and has monoclinic structure with space group of P21/n. Electrochemical measurements show that the carbon-coated material is able to deliver a high initial discharge specific capacity of 128.6 mAh·g-1 in the voltage range 2.0 ~ 4.0 V at 10 mA·g-1. While in the voltage range 2.0 ~ 4.95 V, its initial discharge specific capacities can reach 165 mAh·g-1, which is 1.3 times higher than the theoretical capacity. In-situ XAFS study show that no obvious evidence of Fe3+/Fe4+ redox couple is involved in the electrochemical reaction, indicating that the capacities which beyond the theoretical capacity may come from the high concentration of surface defects introduced by ball milling process.
文章导航

/