欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授)

锂电池原位与非原位表征技术研究

  • 李文俊 ,
  • 郑杰允 ,
  • 谷林 ,
  • 李泓
展开
  • 中国科学院物理研究所,北京 100190

收稿日期: 2014-12-04

  修回日期: 2015-03-01

  网络出版日期: 2015-03-01

基金资助

国家重点基础研究发展计划(No. 2012CB932900)及国家自然科学基金杰出青年基金项目(No. 51325206)资助

Researches on In-situ and Ex-situ Characterization Techniques in Lithium Batteries

  • LI Wen-Jun ,
  • ZHENG Jie-Yun ,
  • GU Lin ,
  • LI Hong
Expand
  • Institute of physics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2014-12-04

  Revised date: 2015-03-01

  Online published: 2015-03-01

摘要

锂电池的电化学性能与电子及离子在体相与界面的输运、反应、储存行为有关. 从原子尺度到宏观尺度,对电池材料在平衡态与非平衡态过程的电子结构、晶体结构、微观形貌、化学组成、物理性质的演化研究对于理解锂离子电池中各类构效关系至关重要,这需要综合多种原位与非原位表征技术. 目前,基础研究处于前沿的发达国家在这些方面取得了卓有成效的进展. 本文简介了中国科学院物理研究所近年来通过国内外合作,采用原位X射线衍射(in-situ XRD)、原位X射线吸收谱(in-situ XAS)、准原位/原位扫描电镜(quasi/in-situ SEM)、球差校正扫描透射电镜(HAADF/ABF-STEM)、扫描力曲线(Force-Curve)、中子衍射(Neutron Diffraction)、热重-差示扫描量热-质谱联用(TG-DSC-MS)、表面增强拉曼(SERS)等技术研究锂离子电池电极材料结构演化方面的进展,并对未来锂离子电池研究中先进表征技术的发展进行了简要的探讨.

本文引用格式

李文俊 , 郑杰允 , 谷林 , 李泓 . 锂电池原位与非原位表征技术研究[J]. 电化学, 2015 , 21(2) : 99 -114 . DOI: 10.13208/j.electrochem.141054

Abstract

Electrochemical performance of Lithium batteries is directly linked to interfacial transports, reactions and storing behaviors of electrons and ions at bulk-surface interfaces. It is extremely important to conduct evolution studies from atomic level to macro level in electron structures, crystal structures, microstructures and morphologies, chemical compositions and physical properties of battery materials at equilibrium and nonequilibrium in order to understand various structure-performance relations in lithium ion batteries. Advanced in-situ and ex-situ characterization techniques have been used widely to clarify scientific and technological problems in lithium batteries. This paper summarizes our efforts on battery researches using various experimental techniques, including in situ X-ray diffraction (in-situ XRD), in situ X-ray absorption spectroscopy (in-situ XAS), quasi-situ/in situ scanning electron microscopy imaging (quasi/in-situ SEM), high angle annular dark field/ annular bright field–scanning transmission electron microscopy (HAADF/ABF-STEM), scanning force curve, neutron diffraction, thermogravimetric–differential scanning calorimetry–mass spectroscopy (TG-DSC-MS), surface enhanced Raman spectroscopy (SERS), etc. Future research directions in advanced characterization techniques for lithium ion batteries are briefly discussed.

参考文献

[1] Wenju L, Geng C, Jiayue P, et al. Fundamental scientific aspects of lithium batteries (XII)—Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667.
[2] Thurston T R, Jisrawi N M, Mukerjee S, et al. Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells[J]. Applied Physics Letters, 1996, 69(2): 194-196.
[3] Liu L, Chen L, Huang X, et al. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material[J]. Journal of The Electrochemical Society, 2004, 151(9): A1344-A1351.
[4] Nam K W, Wang X J, Yoon W S, et al. In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916.
[5] Wang X J, Chen H Y, Yu X, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chemical Communications, 2011, 47(25): 7170-7172.
[6] Wang L, Li H, Huang X, et al. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”[J]. Solid State Ionics, 2011, 193(1): 32-38.
[7] Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communication, 2013, 4: 1870.
[8] Wang Y, Yu X, Xu S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communication, 2013, 4: 2365.
[9] Wu N, Lyu Y-C, Xiao R-J, et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6(8): e120.
[10] Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4[J]. Nature Material, 2008, 7(9): 741-747.
[11] Yu X, Wang Q, Zhou Y, et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy[J]. Chemical Communication, 2012, 48(94): 11537-11539.
[12] Yu X, Lyu Y, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): 1300950
[13] Liu X, Liu J, Qiao R, et al. Phase transformation and lithiation effect on electronic structure of LixFePO4: An in-depth study by soft X-ray and simulations[J]. Journal of the American Chemical Socioety, 2012, 134(33): 13708-13715.
[14] He Y, Yu X, Wang Y, et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Material, 2011, 23(42): 4938-4941.
[15] Wang Y H, He Y, Xiao R J, et al. Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries[J]. Journal of Power Sources, 2012, 202: 236-245.
[16] Li W, Zheng H, Chu G, et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: A top view investigation[J]. Faraday Discussion, 2014, published online.
[17] Zheng H, Xiao D, Li X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14(8): 4245-4249.
[18] Xiao D D(肖东东), Gu L(谷林). Atomic-scale structure of nearly-equilibrated electrode materials under lithiation/delithiation for lithium-ion batteries[J]. Scientia Sinica Chimica(中国科学 化学), 2014, 44(3): 295-308.
[19] Lu X, Jian Z, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7[J]. Energy & Environmental Science, 2011, 4(8): 2638-2644.
[20] Lu X, Zhao L, He X, et al. Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy[J]. Advance Material, 2012, 24(24): 3233-3238.
[21] Tang D, Liu D, Liu Y, et al. Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2[J]. Progress in Natural Science-Materials International, 2014, 24(4): 388-396.
[22] Zhao L, Pan H L, Hu Y S, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B, 2012, 21(2): 028201.
[23] Gu L, Zhu C, Li H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution[J]. Journal of the American Chemical Socioety, 2011, 133(13): 4661-4663.
[24] Suo L, Han W, Lu X, et al. Highly ordered staging structural interface between LiFePO4 and FePO4[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5363-5367.
[25] Zhu C, Gu L, Suo L, et al. Size-dependent staging and phase transition in LiFePO4/FePO4[J]. Advanced Functional Materials, 2014, 24(3): 312-318.
[26] Lu X, Sun Y, Jian Z, et al. New insight into the atomic structure of electrochemically delithiated O3-Li1-xCoO2 (0 ≤ x ≤ 0.5) nanoparticles[J]. Nano Letters, 2012, 12(12): 6192-6197.
[27] Wang R, He X, He L, et al. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation[J]. Advanced Energy Materials, 2013, 3(10): 1358-1367.
[28] Lyu Y, Ben L, Sun Y, et al. Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions[J]. Journal of Power Sources, 2015, 273: 1218-1225.
[29] Xu W, Vegunta S S S, Flake J C. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(20): 8583-8589.
[30] Zhang J, Wang R, Yang X, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012, 12(4): 2153-2157.
[31] Zheng J, Zheng H, Wang R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238.
[32] Zeng Y, Li L, Li H, et al. TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries[J]. Ionics, 2008, 15(1): 91-96.
[33] Li H, Mo Y J, Pei N, et al. Surface-enhanced Raman scattering study on passivating films of Ag electrodes in lithium batteries[J]. Journal of Physical Chemistry B, 2000, 104(35): 8477-8480.
[34] Li G F, Li H, Mo Y J, et al. Surface enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on silver electrode in lithium batteries[J]. Chemical Physics Letters, 2000, 330(3/4): 249-254.
[35] Sharma N, Guo X, Du G, et al. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4[J]. Journal of the American Chemical Socioety, 2012, 134(18): 7867-7873.
文章导航

/