欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

三维多级孔类石墨烯载三氧化二铁锂离子电池负极材料

  • 张勤伟 ,
  • 李运勇 ,
  • 沈培康
展开
  • 中山大学 光电材料与技术国家重点实验室,物理科学与工程技术学院,广东 广州510275

收稿日期: 2014-09-12

  修回日期: 2014-11-13

  网络出版日期: 2014-11-18

基金资助

国家自然科学基金项目(No. 21073241,No. 51210002)资助

Nanosized Fe2O3 on Three Dimensional Hierarchical Porous Graphene-Like Matrices as High-Performance Anode Material for Lithium Ion Batteries

  • ZHANG Qin-Wei ,
  • LI Yun-Yong ,
  • SHEN Pei-Kang
Expand
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2014-09-12

  Revised date: 2014-11-13

  Online published: 2014-11-18

摘要

采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料. 3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料. Fe2O3-3D HPG电极在50 mA·g-1电流密度下首次放电容量达1745 mAh·g-1,50周期放电容量保持于1095 mAh·g-1.

本文引用格式

张勤伟 , 李运勇 , 沈培康 . 三维多级孔类石墨烯载三氧化二铁锂离子电池负极材料[J]. 电化学, 2015 , 21(1) : 66 -71 . DOI: 10.13208/j.electrochem.140913

Abstract

Ferric oxide (Fe2O3) as a promising anode material for lithium ion battery is due to its high theoretical capacity (1007 mAh·g-1), earth abundance and low cost. The nanosized Fe2O3 on the three dimensional hierarchical porous graphene-like network (denoted as Fe2O3-3D HPG) has been synthesized by homogeneous precipitation and heat treatment. The 3D HPG can provide a highly conductive structure in conjunction to support well contacted Fe2O3 nanoparticles, and effectively enhance the mechanical strength of the matrices during volume changes, as well as improve the utilization rate of Fe2O3 and suppress the aggregation of Fe2O3 nanoparticles during Li ion insertion/extraction. As a result, the first discharge capacity of Fe2O3-3D HPG was up to 1745 mAh·g-1 at 50 mA·g-1, and after 50 cycles, the retention of the capacity was 1095 mAh·g-1.

参考文献

[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.
[3] Buqa H, Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2005, 152(2): A474-A481.
[4] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377.
[5] Jang B, Park M, Chae O B, et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes[J]. Journal of the American Chemical Society, 2012, 134(36): 15010-15015.
[6] Kwon K A, Lim H S, Sun Y K, et al. α-Fe2O3 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(6): 2897-2907.
[7] Zhao B, Liu R, Cai X, et al. Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries[J]. Journal of Applied Electrochemistry 2014, 44(1): 53-60.
[8] Luo J, Liu J, Zeng Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano letters, 2013, 13(12): 6136-6143.
[9] He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano, 2013, 7(5): 4459-4469.
[10] Y Li, Q Zhang, Zhu J, et al. An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(9): 3163-3168.
[11] C X Guo, M Wang, Chen T, et al. A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries[J]. Advanced Energy Materials, 2011, 1(5): 736-741.
[12] Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194.
[13] Tao L, Zai J, Wang, K, et al. Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability[J]. Journal of Power Sources, 2012, 202: 230-235.
[14]Wang Y, Xu M, Peng Z, et al. Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(42): 13222-13226.
[15] Ren Y, Liu Z, Pourpoint F, et al. Nanoparticulate TiO2(B): An anode for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2012, 124(9): 2206-2209.
[16] Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
[17] Sun Y, Zhang J, Huang T, et al. Fe2O3/CNTs composites as anode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2013, 8(2): 2918-2931.
[18] Chen J, Xu L, Li W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials, 2005, 17(5): 582-586.
[19] Reddy M, Yu T, Sow C H, et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Advanced Functional Materials, 2007, 17(15): 2792-2799.
[20] Wu H, Xu M, Wang Y, et al. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes[J]. Nano Research, 2013, 6(3): 167-173.
[21] Brandt A, Balducci A. Ferrocene as precursor for carbon-coated α-Fe2O3 nanoparticles for rechargeable lithium batteries[J]. Journal of Power Sources, 2013, 230: 44-49.
[22] Fei H, Peng Z, Li L, et al. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries[J]. Nano Research, 2014, 7(4): 1-9.
[23] Li Y, Li Z, Shen P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous grapheme-like networks for fast and highly stable supercapacitors[J]. Advanced Materials, 2013, 25(17): 2474-2480.
[24] Zhang M, Qu B, Lei D, et al. A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties[J]. Journal of Materials Chemistry, 2012, 22(9): 3868-3874.
[25] Ang W A, Gupta N, Prasanth R, et al. Facile synthesis and electrochemical properties of alpha-phase ferric oxide hematite cocoons and rods as high-performance anodes for lithium-ion batteries[J]. Journal of Materials Research, 2013, 28(6): 824-831.
[26] Reddy M V, Subba R G V, Chowdari B V R, et al. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews, 2013, 113(7): 5364-5457.
[27] Su L, Zhou Z, Qin X, et al. CoCO3 submicrocube/graphene composites with high lithium storage capability[J]. Nano Energy, 2013, 2(2): 276-282.
[28] Su L, Zhong Y, Zhen Z, et al. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres[J]. Journal of Materials Chemistry A, 2013, 1(47): 15158-15166.
[29] Yin J, Shi H, Wu P, et al. Graphene-wrapped single-crystalline Fe3O4 nanorods with superior lithium-storage capabilities[J]. New Journal of Chemistry, 2014, 38(9): 4036-4040.
文章导航

/