欢迎访问《电化学(中英文)》期刊官方网站,今天是
生物电分析化学近期研究专辑(南京大学 夏兴华教授主编)

“金标银染”放大技术的羟基自由基灵敏检测

  • 杨妍 ,
  • 喻鹏 ,
  • 张小华 ,
  • 陈金华
展开
  • 1. 湖南大学化学化工学院,化学生物传感与计量学国家重点实验室,湖南 长沙 410082;2. 南阳师范学院化学与制药工程学院,河南 南阳 473061

收稿日期: 2014-08-04

  修回日期: 2014-09-25

  网络出版日期: 2014-09-30

基金资助

国家自然科学基金项目(No. 21275041, No. 21235002, No. 21221003)资助

Sensitive Detection of Hydroxyl Radical based on Silver-Enhanced Gold Nanoparticle Label

  • YANG Yan ,
  • YU Peng ,
  • ZHANG Xiao-Hua ,
  • CHEN Jin-Hua
Expand
  • 1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha Hunan 410082, China; 2. College of Chemistry and Pharmaceutical engineering, Nanyang Normal University, Henan Nanyang, 473061, China

Received date: 2014-08-04

  Revised date: 2014-09-25

  Online published: 2014-09-30

摘要

本文采用银染增强金纳米粒子(AuNPs)为信号因子,构建了一种新型的灵敏检测羟基自由基(·OH)的DNA电化学传感器. 首先,巯基化的DNA1通过Au—S键自组装于金基底电极表面. 然后,由Fenton反应产生的·OH可引起电极表面DNA1自组装层的氧化损伤裂解,未损伤的DNA1可与功能化AuNPs上的DNA2杂交. 利用AuNPs对银离子的催化还原反应,将银原子沉积在AuNPs的周围,形成一层银外壳,再用差分脉冲伏安法(DPV)技术对沉积的银进行电化学检测,从而实现·OH的定量分析. 研究结果表明, 在最优实验条件下,该传感器检测·OH的线性范围为0.2 ~ 200 μmol·L-1,检测下限为50 nmol·L-1. 该传感器有较好的重复性、选择性,并在抗氧化剂抗氧化能力评估方面具有潜在应用价值.

本文引用格式

杨妍 , 喻鹏 , 张小华 , 陈金华 . “金标银染”放大技术的羟基自由基灵敏检测[J]. 电化学, 2015 , 21(1) : 22 -28 . DOI: 10.13208/j.electrochem.140442

Abstract

A novel DNA-based electrochemical sensor has been successfully constructed for sensitive detection of hydroxyl radical (·OH) based on the silver-enhanced gold nanoparticle label. Thiolated DNA1 was firstly immobilized on the gold electrode through Au—S bonds. The ·OH generated from Fenton reaction could induce serious oxidative damage of the DNA1 layer on the electrode surface. Then DNA2-functionalized gold nanoparticles (DNA2-AuNPs) were linked on the electrode through the hybridization between DNA2 and undamaged DNA1. Based on the catalytic reduction of silver ion by AuNPs, a silver layer was formed on the surface of AuNPs. The quantitative assay of ·OH was carried out by differential pulse voltammetry (DPV) detection of the deposited silver. Under the optimization conditions, the developed DNA-based biosensor could detect ·OH quantitatively with wide linear range (0.2 ~ 200 μmol·L-1) and low detection limit (50 nmol·L-1), and exhibited satisfactory selectivity and reproducibility. This electrochemical biosensor could have potential application in the evaluation of antioxidant capacity.

参考文献

[1] Mello L D, Hernandez S, Marrazza G, et al. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor[J]. Biosensors and Bioelectronics, 2006, 21(7): 1374-1382.
[2] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence[J]. Molecular and Cellular Biochemistry, 2004, 266(1/2): 37-56.
[3] King P, Anderson V, Edwards J, et al. A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: Reaction with proteins and nucleic acid[J]. Journal of the American Chemical Society, 1992, 114(13): 5430-5432.
[4] Cadet J, Delatour T, Douki T, et al. Hydroxyl radicals and DNA base damage[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 424(1): 9-21.
[5] Bandyopadhyay U, Das D, Banerjee R K. Reactive oxygen species: Oxidative damage and pathogenesis[J]. Current Science, 1999, 77(5): 658-666.
[6] Raha S, Robinson B H. Mitochondria, oxygen free radicals, disease and ageing[J]. Trends in Biochemical Sciences, 2000, 25(10): 502-508.
[7] Loeb L A, Wallace D C, Martin G M. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52): 18769-18770.
[8] Newton G L, Milligan J R. Fluorescence detection of hydroxyl radicals[J]. Radiation Physics and Chemistry, 2006, 75(4): 473-478.
[9] Pou S, Ramos C L, Gladwell T, et al. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical[J]. Analytical Biochemistry, 1994, 217(1): 76-83.
[10] Pritsos C A, Constantinides P P, Tritton T R, et al. Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C[J]. Analytical Biochemistry, 1985, 150(2): 294-299.
[11] Yu J, Ge L, Huang J, et al. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid[J]. Lab on A Chip, 2011, 11(7): 1286-1291.
[12] Liu Y, Hu N. Electrochemical detection of natural DNA damage induced by ferritin/ascobic acid/H2O2 system and amplification of DNA damage by endonuclease Fpg[J]. Biosensors and Bioelectronics, 2009, 25(1): 185-190.
[13] Labuda J, Bu?ková M, Heilerova L, et al. Detection of antioxidative activity of plant extracts at the DNA-modified screen-printed electrode[J]. Sensors, 2002, 2(1): 1-10.
[14] Huang J, Li T, Chen Z, et al. Rapid electrochemical detection of DNA damage and repair with epigallocatechin gallate, chlorogenic acid and ascorbic acid[J]. Electrochemistry Communications, 2008, 10(8): 1198-1200.
[15] Zu Y, Liu H, Zhang Y, et al. Electrochemical detection of in situ DNA damage with layer-by-layer films containing DNA and glucose oxidase and protection effect of catalase layers against DNA damage[J]. Electrochimica Acta, 2009, 54(10): 2706-2712.
[16] Wu L, Yang Y, Zhang H, et al. Sensitive electrochemical detection of hydroxyl radical with biobarcode amplification[J]. Analytica Chimica Acta, 2012, 756: 1-6.
[17] Wang Y, Yin X, Shi M, et al. Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective ?lms coupled with silver-enhanced gold nanoparticles[J]. Talanta, 2006, 69(5): 1240-1245.
[18] Chen Z, Peng Z, Luo Y, et al. Successively ampli?ed electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement[J]. Biosensors and Bioelectronics, 2007, 23(4): 485-491.
[19] Lin L, Liu Y, Tang L, et al. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy[J]. Analyst, 2011, 136(22): 4732-4737.
[20] Deng C, Chen J, Nie Z, et al. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles[J]. Analytical Chemistry, 2008, 81(2): 739-745.
[21] Huang W T, Xie W Y, Shi Y, et al. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+[J]. Journal of Materials Chemistry, 2011, 22(4): 1477-1481.
[22] Huang Y, Wang T H, Jiang J H, et al. Prostate specific antigen detection using microgapped electrode array immunosensor with enzymatic silver deposition[J]. Clinical chemistry, 2009, 55(5): 964-971.
[23] Huang C C, Chiu S H, Huang Y F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor[J]. Analytical Chemistry, 2007, 79(13): 4798-4804.
[24] Jia S P, Liang M M, Guo L H. Photoelectrochemical detection of oxidative DNA damage induced by Fenton reaction with low concentration and DNA-associated Fe2+[J]. The Journal of Physical Chemisty B, 2008, 112(14): 4461-4464.
[25] Liang M M, Guo L H. Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the Fenton reaction[J]. Environmental Science & Technology, 2007, 41(2): 658-664.
文章导航

/