欢迎访问《电化学(中英文)》期刊官方网站,今天是
生物电分析化学近期研究专辑(南京大学 夏兴华教授主编)

双极电极-电致化学发光技术在生物分析中的应用

  • 吴梅笙 ,
  • 徐静娟 ,
  • 陈洪渊
展开
  • 1. 南京大学 生命分析化学国家重点实验室,化学化工学院,江苏 南京 210093;2. 南京农业大学理学院化学系,江苏 南京 210098

收稿日期: 2014-11-12

  修回日期: 2014-12-01

  网络出版日期: 2014-12-07

基金资助

国家自然科学基金项目(No. 21025522, No. 21121091, No. 21305068)资助

Electrochemiluminescence Assay Based on Bipolar Electrode for Bioanalysis

  • WU Mei-Sheng ,
  • XU Jing-Juan ,
  • CHEN Hong-Yuan
Expand
  • 1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; 2. Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2014-11-12

  Revised date: 2014-12-01

  Online published: 2014-12-07

摘要

在微管道两端施加一定的电压时,置于这个电场中的金属或半导体带与溶液的界面电势差达到一定的数值后,就会引起溶液电活性物质在其两端发生氧化还原反应,该金属或半导体带即称为双极电极(BPE). BPE与电致化学发光(ECL)技术的完美结合有诸多优点,如浓度富集、灵敏度高、成本低、装置轻便且不需要外加光源等,极适合生物分析检测. 本文综述了双极电极-电致化学发光技术在生物分析中的应用,并展望相关发展趋势.

本文引用格式

吴梅笙 , 徐静娟 , 陈洪渊 . 双极电极-电致化学发光技术在生物分析中的应用[J]. 电化学, 2015 , 21(1) : 1 -7 . DOI: 10.13208/j.electrochem.140444

Abstract

Bipolar electrodes (BPEs) are electronic conductors which are usually embedded into microchannels. The potential difference at the BPE/solution interface is obtained by applying a voltage at the two ends of the microchannel. When it reaches a critical value, the redox reaction takes place at both poles of the BPE simultaneously. Compared with other detection methods, the electrochemiluminescence (ECL) platform based on BPE possesses the advantages of concentration enrichment, high sensitivity, low cost, portable sensor system, no need for a light source, which is quite suitable for bioanalysis. This paper reviews the ECL-BPE strategy for bioanalysis and proposes the future research trends.

参考文献

[1] Jie G, Wang L, Yuan J, et al. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters[J]. Analytical Chemistry, 2011, 83(10): 3873-3880.
[2] Wang J, Shan Y, Zhao W W, et al. Gold nanoparticle enhanced electrochemiluminescence of cds thin films for ultrasensitive thrombin detection[J]. Analytical Chemistry, 2011, 83(11): 4004-4011.
[3] Zhou H, Liu J, Xu J J, et al. Ultrasensitive DNA detection based on Au nanoparticles and isothermal circular double-assisted electrochemiluminescence signal amplification[J]. Chemical Communications, 2011, 47(29): 8358-8360.
[4] Tian C Y, Xu J J, Chen H Y. A novel aptasensor for the detection of adenosine in cancer cells by electrochemiluminescence of nitrogen doped TiO2 nanotubes[J]. Chemical Communications, 2012, 48 (66): 8234-8236.
[5] Wang J, Zhao W W, Li X R, et al. Potassium-doped graphene enhanced electrochemiluminescence of SiO2@CdS nanocomposites for sensitive detection of TATA-binding protein[J]. Chemical Communications, 2012, 48(51): 6429-6431.
[6] He L J, Wu M S, Xu J J, et al. A reusable potassium ion biosensor based on electrochemiluminescence resonance energy transfer[J]. Chemical Communications, 2013, 49(15): 1539-1541.
[7] Li L L, ChenY, Lu Q, et al. Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods[J]. Scientific Reports, 2013, 3: 1529.
[8] Zhang H R, Xu J J & Chen H Y. Electrochemiluminescence ratiometry: A new approach to DNA biosensing[J]. Analytical Chemistry2013, 85(11): 5321-5325.
[9] Chow K F, Mavre? F O, Crooks R M. Wireless electrochemical DNA microarray sensor[J]. Journal of the American Chemical Society, 2008, 130(24): 7544-7545.
[10] Chang B Y, Chow K F, Crooks J A, et al. Two-channel microelectrochemical bipolar electrode sensor array[J]. Analyst, 2012, 137(12): 2827-2833.
[11] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[12] Zhan W, Alvarez J, Crooks R M. Electrochemical sensing in microfluldic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. Journal of the American Chemical Society, 2002, 124(44): 13265-13270.
[13] Zhang X, Chen C, Li J, et al. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform[J]. Analytical Chemistry, 2013, 85(11): 5335-5339.
[14] Wu S Z, Zhou Z Y, Xu L R, et al. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis[J]. Biosensors & Bioelectronics, 2014, 53: 148-153.
[15] Zhang X W, Li J, Jia X F, et al. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system[J]. Analytical Chemistry, 2014, 86(11): 5595-5599.
[16] Shi H W, Wu M S, Du Y, et al. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells[J]. Biosensors & Bioelectronics, 2014, 55: 459-463.
[17] Wu M S, Yuan D J, Xu J J, et al. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection[J]. Analytical Chemistry, 2013, 85(24): 11960-11965.
[18] Wu M S, Xu B Y, Shi H W, et al. Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode[J]. Lab on A Chip, 2011, 11(16): 2720-2724.
[19] Wu M S, Qian G S, Xu J J, et al. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode[J]. Analytical Chemistry, 2012, 84(12): 5407-5414.
[20] Lin X M, Zheng L Y, Gao G M, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells[J]. Analytical Chemistry, 2012, 84(18): 7700-7707.
[21] Miao W, Choi J P & Bard A J. Electrogenerated chemiluminescence 69: The Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited a new route involving TPrA?+ cation radicals[J]. Journal of the American Chemical Society, 2002, 124(48): 14478-14485.
[22] Feng Q M, Pan J, Zhang H R, et al. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of cancer biomarker[J]. Chemical Communications, 2014, 50(75): 10949-10951.
[23] Arora A, Eijkel J, Morf W E, et al. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device[J]. Analytical Chemistry, 2001, 73(14): 3282-3288.
[24] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[25] Wang T, Fan S, Erdmann R, et al. Detection of ferrocenemethanol and molecular oxygen based on electrogenerated chemiluminescence quenching at a bipolar electrode[J]. Langmuir, 2013, 29(51): 16040-16044.
[26] Chow K F, Mavre F, Crooks J A, et al. A large-scale, wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society, 2009, 131(24): 8364-8365.
文章导航

/