欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

影响热还原氧化石墨烯超级电容器性能的因素比较

  • 肖鹏 ,
  • 王大辉 ,
  • 郎俊伟
展开
  • 1. 兰州理工大学材料科学与工程学院,甘肃 兰州 730050;2. 中国科学院兰州化学物理研究所,清洁能源化学与材料实验室,甘肃 兰州 730000

收稿日期: 2014-02-13

  修回日期: 2014-05-06

  网络出版日期: 2014-05-16

基金资助

This work was supported by The Top Hundred Talents Program of the Chinese Academy of Sciences and National Natural Science Foundations of China (No. 51005225, No. 21203223)

Comparison in Factors Affecting Electrochemical Properties of Thermal-Reduced Graphene Oxide for Supercapacitors

  • XIAO Peng ,
  • WANG Da-Hui ,
  • LANG Jun-Wei
Expand
  • 1. School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2014-02-13

  Revised date: 2014-05-06

  Online published: 2014-05-16

Supported by

This work was supported by The Top Hundred Talents Program of the Chinese Academy of Sciences and National Natural Science Foundations of China (No. 51005225, No. 21203223)

摘要

通过改进的Hummer法制得氧化石墨烯,并在不同温度的氩气气氛中还原得到一系列热还原氧化石墨烯(T-RGO). 电化学测试表明,T-RGO作为超级电容器电极材料时,良好的导电性是必需的,但石墨烯表面含氧官能团对其电容性能的影响要远大于导电性和比表面积的影响,900 °C还原的T-RGO比表面积为314 m2·g-1电导率为2421 S·m-1,但其容量只有56 F·g-1,然而300 °C还原的T-RGO比表面积为18.8 m2·g-1电导率为574 S·m-1,其容量却达到281 F·g-1. 材料表征分析表明,300 °C 还原的石墨烯之所以有更高的电容,是因为除双电层电容外,更多的是由其表面含氧官能团提供的赝电容,这使作者以后在设计制备超级电容器等储能设备用石墨烯基电极材料时更加有针对性.

本文引用格式

肖鹏 , 王大辉 , 郎俊伟 . 影响热还原氧化石墨烯超级电容器性能的因素比较[J]. 电化学, 2014 , 20(6) : 553 -562 . DOI: 10.13208/j.electrochem.140213

Abstract

In this paper, thermal-reduced graphene oxide (T-RGO) materials are synthesized by modified Hummer’s method, followed by thermal reduction under argon atmosphere at different temperatures. Electrochemical investigations show that, for T-RGO electrodes, good electrical conductivity is necessary and the surface functional groups play more significant role than the specific surface area in determining the electrochemical capacitance. The T-RGO obtained at 900 °C (T-RGO900) with a relatively high Brunauer-Emmett-Teller (BET) surface area (314 m2·g-1) and a high electrical conductivity (2421 S·m-1) shows a low specific capacitance of 56 F·g-1. In comparison, the T-RGO obtained at 300 °C (T-RGO300) with a relatively low BET surface area (18.8 m2·g-1) and an electrical conductivity (574 S·m-1) provides the largest specific capacitance of 281 F·g-1. The large specific capacitance of T-RGO300 results from the simultaneous contributions of the electrochemical double-layer capacitance and the pseudo-capacitance obtained from the oxygenated groups on the T-RGO surfaces. Therefore, it probably gives a new insight for designing and synthesizing graphene-based electrode materials for supercapacitors and other energy-storage devices.

参考文献

[1]Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors[J]. Chemical Reviews, 2004, 104(10): 4245-4269.
[2]Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature materials, 2008, 7(11): 845-854.
[3]Aboutalebi S H, Chidembo A T, Salari M, et al. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy & Environmental Science, 2011, 4(5): 1855-1865.
[4]Wu Z S, Wang D W, Ren W C, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials. 2010, 20(20): 3595-3602.
[5]Lang J W, Kong L B, Wu W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications, 2008, (35): 4213-4215.
[6]Zhu Y W, Murali S, Stoller D S, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[7]Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1774-1785
[8]Zhu Y W, Murali S, Cai W W, et al. Graphene and Graphene Oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
[9]Hou J B, Shao Y Y, Ellis M. W, et al. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2011, 13(34): 15384-15402.
[10]Yan J, Wei T, Shao B, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors[J]. Carbon, 2010, 48(6): 1731-1737.
[11]Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19(3): 438-447.
[12]Khomenko V, Raymundo-Pi?ero E, Béguin F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte[J]. Journal of Power Sources, 2010, 195(13): 4234-4241.
[13]Stoller D M, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
[14]Du Q L, Zheng M B, Zhang L F, et al. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors[J]. Electrochimica Acta, 2010, 55(12): 3897-3903.
[15]Chen J T, Zhang G A, Luo B M, et al. Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation[J]. Carbon, 2011, 49(9): 3141-3147.
[16]Lang J W, Yan X B, Xue Q J. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors[J]. Journal of Power Sources, 2011, 196(18): 841-7846.
[17]Lv W, Tang D M, He Y B, et al. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano, 2009, 3(11): 3730-3736.
文章导航

/