欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

喷雾干燥-高温烧结的NaMnPO4制备及其电化学性能

  • 林晓琛 ,
  • 吴晓彪 ,
  • 侯旭 ,
  • 杨勇
展开
  • 厦门大学 化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005

收稿日期: 2014-04-16

  修回日期: 2014-04-23

  网络出版日期: 2014-04-28

基金资助

973国家重点基础研究发展计划(No. 2011CB935903)和国家自然科学基金(No. 21233004和No. 21021002)项目资助

Synthesis of NaMnPO4 by Spraying Drying-High Temperature Sintering and Its Electrochemical Performance

  • LIN Xiao-Chen ,
  • WU Xiao-Biao ,
  • HOU Xu ,
  • YANG Yong
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2014-04-16

  Revised date: 2014-04-23

  Online published: 2014-04-28

摘要

采用喷雾干燥制备前驱体,经高温烧结制得有电化学活性的钠离子电池NaMnPO4正极材料. X射线衍射分析(XRD)证明,合成的NaMnPO4材料系正交晶系、Pmnb空间群的磷钠锰矿(Natrophilite)型材料. 扫描电镜(SEM)及透射电镜(TEM)结果显示,喷雾干燥得到的前驱体为空心球粒子,经高温烧结后,该材料由粒径几十纳米的NaMnPO4纳米晶一次颗粒及无定形碳网络结构相互连接组成的微米级二次颗粒构成. 电化学测试表明,NaMnPO4/C复合结构显著改善了材料的离子电导与电子电导,首次报道电流密度为7.75 mA·g-1、电压范围为1.0 ~ 4.5 V (vs. Na+/Na)时,钠离子电池NaMnPO4正极材料的可逆放电比容量达90 mAh·g-1.

本文引用格式

林晓琛 , 吴晓彪 , 侯旭 , 杨勇 . 喷雾干燥-高温烧结的NaMnPO4制备及其电化学性能[J]. 电化学, 2014 , 20(6) : 542 -546 . DOI: 10.13208/j.electrochem.140416

Abstract

As a cathode material for sodium ion batteries, NaMnPO4/C nanocomposite is successfully synthesized by the combination of spraying drying and high temperature sintering methods. The crystal structure of the as-synthesized phosphate material is confirmed as the natrophilite NaMnPO4, which possesses orthorhombic symmetry and Pmnb space group. It is shown that the precursors are hollow spherical particles and the obtained product consists of micro-scaled secondary particles, which are composed of NaMnPO4 nanocrystallites (tens of nanometres) and amorphous carbon networks. The ionic and electronic conductivities of NaMnPO4 are both effectively enhanced with the help of this nanocomposite structure. In addition, the differences in the Na+-diffusion channel and local structures among the three types of NaMPO4, i.e. olivine, maricite and natrophilite, are also discussed. The electrochemical tests show that the natrophilite NaMnPO4 can deliver the reversible capacity of 90 mAh·g-1 at a current density of 7.75 mA·g-1 when cycled in the voltage range of 1.0-4.5 V (vs. Na+/Na).

参考文献

[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
[3] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
[4] Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.
[5] Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[6] Moring J, Kostiner E. The crystal structure of NaMnPO4[J]. Journal of Solid State Chemistry, 1986, 61(3): 379-383.
[7] Bridson J N, Quinlan S E, Tremaine P R. Synthesis and crystal structure of maricite and sodium iron(III) hydroxyphosphate[J]. Chemistry of Materials, 1998, 10(3): 763-768.
[8] Moreau P, Guyomard D, Gaubicher J, et al. Structure and stability of sodium intercalated phases in olivine FePO4[J]. Chemistry of Materials, 2010, 22(14): 4126-4128.
[9] Lee K T, Ramesh T N, Nan F, et al. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries[J]. Chemistry of Materials, 2011, 23(16): 3593-3600.
[10] Tripathi R, Wood S M, Islam M S, et al. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4[J]. Energy & Environmental Science, 2013, 6(8): 2257-2264.
[11] Zhu Y, Xu Y, Liu Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787.
[12] Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688.
[13] Shi F, Rocha J, Trindade T. Synthetic NaMnPO4 microtubules[J]. Materials Letters, 2005, 59(6): 652 - 655.
文章导航

/