欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

单极脉冲一步合成聚苯胺/铁氰化镍杂化膜及其过氧化氢电催化还原活性

  • 廖森梁 ,
  • 李修敏 ,
  • 郝晓刚 ,
  • 王艳红 ,
  • 薛春峰 ,
  • 王永洪
展开
  • 太原理工大学化学化工学院化学工程系,山西 太原 030024

收稿日期: 2014-03-11

  修回日期: 2014-05-09

  网络出版日期: 2014-05-14

基金资助

国家自然科学基金项目 (No. 21276173)、山西省自然科学基金项目(No. 2012011020-5,No. 2012011006-1)、山西省国际科技合作计划项目(No. 2011081028)及太原理工大学创新研究项目(No. TYUT-RC201113A)资助

One-Step Synthesis of PANI/NiHCF Hybrid Film Using Unipolar Pulse Electrodeposition and Its Electrocatalytic Reduction Performance for H2O2 Detection

  • LIAO Sen-Liang ,
  • LI Xiu-Min ,
  • HAO Xiao-Gang ,
  • WANG Yan-Hong ,
  • XUE Chun-Feng ,
  • WANG Yong-Hong
Expand
  • College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Received date: 2014-03-11

  Revised date: 2014-05-09

  Online published: 2014-05-14

摘要

采用单极脉冲法在铂基体表面一步合成聚苯胺/铁氰化镍 (PANI/NiHCF) 有机-无机杂化膜,并分析了杂化膜高电势静电吸引沉积机理. 高电压聚合杂化膜避免了Fe(CN)63-的还原,并形成单一“不可溶”结构NiHCF. 用扫描电镜(SEM)、X射线能谱仪(EDS)和傅立叶变换红外(FT-IR)光谱研究了杂化膜表面形貌及组成,并考察了不同单极脉冲电压制得杂化膜的电化学性能. 结果表明,单极脉冲电压1.0 V制得的PANI/NiHCF杂化膜有最佳的电活性和良好的稳定性. 使用计时电流法考察了杂化膜电极的过氧化氢(H2O2)的电催化还原活性,在0.5 mol·L-1 KCl + 0.5 mol·L-1 HCl电解液中,PANI/NiHCF杂化膜电极过氧化氢催化还原电流与其浓度(4.0×10-4 ~ 1.6×10-2 mol·L-1)呈良好的线性关系,相关性系数R = 0.9991,检出限为6.09×10-5 mol·L-1,灵敏度为1075 mA·(mol·L-1)-1·cm-2.

本文引用格式

廖森梁 , 李修敏 , 郝晓刚 , 王艳红 , 薛春峰 , 王永洪 . 单极脉冲一步合成聚苯胺/铁氰化镍杂化膜及其过氧化氢电催化还原活性[J]. 电化学, 2014 , 20(6) : 563 -570 . DOI: 10.13208/j.electrochem.140311

Abstract

Organic–inorganic hybrid films composed of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) were fabricated on platinum substrates using unipolar pulse one-step electrodeposition. The deposition mechanism of hybrid film was proposed: Due to high potential of unipolar pulse electrodeposition, which avoided the reduction of Fe(CN)63-, the films with high electrocatalytic property and “insoluble” form of NiHCF were achieved. The morphology and composition of PANI/NiHCF hybrid film were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). The effect of pulse potential on the electrochemical performance of hybrid film was investigated in detail. Results showed that pulse potential had a major impact on electroactivity and stability of the film, and the optimal deposition potential was 1.0 V. The hybrid ?lms exhibited high electrocatalytic activity, eligible sensitivity and low detection limit in detecting hydrogen peroxide (H2O2). The linear range for the detection of H2O2 was from 4.0×10-4 to 1.6×10-2 mol·L-1 with a correlation coefficient of 0.9991, a sensitivity of 1075 mA·(mol·L-1)-1·cm-2 and a detection limit of 6.09×10-5 mol·L-1.

参考文献

[1] Zamponi S, Berrettoni M, Kulesza P J, et al. Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film[J]. Electrochimica Acta, 2003, 48(28): 4261-4269.
[2] Chen W, Tang J, Xia X H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces[J]. The Journal of Physical Chemistry C, 2009, 113(52): 21577-21581.
[3] Hao X G(郝晓刚), Guo J X(郭金霞), Liu S B(刘世斌), et al. Electrochemically switched ion exchange performances of capillary deposited nickel hexacyanoferrate thin films[J]. Transactions of Nonferrous Metals Society of China (中国有色金属学报), 2006, 16(3): 556-561.
[4] Hao X G, Yan T, Wang Z D, et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates[J]. Thin Solid Films, 2012, 520(7): 2438-2448.
[5] Chen W, Tang J, Cheng H J, et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application[J]. Talanta, 2009, 80(2): 539-543.
[6] Chen W, Xia X H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange[J]. Advanced Functional Materials, 2007, 17(15): 2943-2948.
[7] Sitnikova N A, Borisova A V, Komkova M A, et al. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates[J]. Analytical chemistry, 2011, 83(6): 2359-2363.
[8] Fiorito P A, Córdoba de Torresi S I. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors[J]. Journal of Electroanalytical Chemistry, 2005, 581(1): 31-37.
[10] Ma X L(马旭莉), Sun S B(孙守斌), Wang Z D(王忠德), et al. Electrocatalytic oxidation of ascorbic acid on carbon nanotube/cubic nickel cyanoferrate/polyaniline hybrid films[J]. New Carbon Materials(新型炭材料), 2013, 28(1): 26-32.
[11] Wang X, Zhang Y, Banks C E, et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes[J]. Colloids and surfaces B: Biointerfaces, 2010, 78(2): 363-366.
[12] Li Y, Zhao K, Du X, et al. Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method[J]. Synthetic Metals, 2012, 162(1/2): 107-113.
[13] Peng X Y, Luan F, Liu X X, et al. pH-controlled morphological structure of polyaniline during electrochemical deposition[J]. Electrochimica Acta, 2009, 54(26): 6172-6177.
[14] Wang Z D, Sun S B, Hao X G, et al. A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for H2O2 detection[J]. Sensors and Actuators B: Chemical, 2012, 171(26): 1073-1080.
[15] Zou Y J, Sun L X, Xu F. Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection[J]. Talanta, 2007, 72(2): 437-442.
[15] Zang Y(臧杨), Hao X G(郝晓刚), Wang Z D(王忠德), et al. Copolymerization and capacitive performance of composite carbon nanotubes/polyaniline/nickel hexacyanoferrate films[J]. Acta Physico-Chimica Sinica(物理化学学报), 2010, 26(2): 291-298.
[16] Hao X G, Li Y G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414.
[17] Li Y(李越), Hao X G(郝晓刚), Wang Z D(王忠德), et al. Unipolar pulse electrochemical polymerization of polyaniline nanofiber films for supercapacitor applications[J]. CIESC Journal(化工学报), 2010, 61(S1): 120-125.
[18] Li X M, Du X, Wang Z D, et al. Electroactive NiHCF/PANI hybrid films prepared by pulse potentiostatic method and its performance for H2O2 detection[J]. Journal of Electroanalytical Chemistry, 2014, 717: 69-77.
[19] ?eděnková I, Trchová M, Stejskal J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies[J]. Polymer Degradation and Stability, 2008, 93(12): 2147-2157.
[20] Chen X, Chen Z, Tian R, et al. Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film[J]. Analytica Chimica Acta, 2012, 723: 94-100.
[21] Lin Y, Cui X. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites[J]. Journal of Materials Chemistry, 2006, 16(6): 585-592.
[22] Hu Z A, Xie Y L, Wang Y X, et al. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2/3): 990-995.
[23] Kulesza P J, Skunik M, Baranowska B, et al. Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures[J]. Electrochimica Acta, 2006, 51(11): 2373-2379.
[24] Wang Z D, Feng Y T, Hao X G, et al. A novel potential-responsive ion exchange film system for heavy metal removal[J]. Journal of Materials Chemistry A, 2014, 2(26): 10263-10272.
文章导航

/