[1] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. TrAC Trends in Analytical Chemistry, 1999, 18(1): 47-62.
[2] Richter M M. Electrochemiluminescence (ECL)[J]. Chemical Reviews, 2004, 104(6), 3003-3036.
[3] Zhou H, Kasai S, Matsue T. Imaging localized horseradish peroxidase on a glass surface with scanning electrochemical/chemiluminescence microscopy[J]. Analytical Biochemistry, 2001, 290(1): 83-88.
[4] Lei R, Stratmann L, Schafer D, et al. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence[J]. Analytical Chemistry, 2009, 81(12): 5070-5074.
[5] Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chemical Society Reviews, 2010, 39(8): 3275-3304.
[6] Maus R G, Wightman R M. Microscopic imaging with electrogenerated chemiluminescence[J]. Analytical Chemistry, 2001, 73(16): 3993-3998.
[7] Zu Y B, Ding Z F, Zhou J F, et al. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip[J]. Analytical Chemistry, 2001, 73(10): 2153-2156.
[8] Xu L R, Li Y, Wu S Z, et al. Imaging latent fingerprints by electrochemiluminescence[J]. Angewandte Chemie International Edition, 2012, 124(32): 8192-8196.
[9] Sojic N, Sentic M, Milutinovic M, et al. Mapping the electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays[J]. Chemical Science, 2014, 5: 2568-2572.
[10] Engstrom R C, Johnson K W, DesJarlais S. Characterization of electrode heterogeneity with electrogenerated chemiluminescence[J]. Analytical Chemistry, 1987, 59(4): 670-673.
[11] Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams[J]. Analytical Chemistry, 1996, 68(2): 349-354.
[12] Chovin A, Garrigue P, Sojic N. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array[J]. Electrochimica acta, 2004, 49(22): 3751-3757.
[13] Marquette C A, Degiuli A, Blum L J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate[J]. Biosensors and Bioelectronics, 2003, 19(5): 433-439.
[14] Deiss F, LaFratta C N, Symer M, et al. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level[J]. Journal of the American Chemical Society, 2009, 131(17): 6088-6089.
[15] Sardesai N P, Barron J C, Rusling J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins[J]. Analytical Chemistry, 2011, 83(17): 6698-6703.
[16] Hvastkovs E G, So M, Krishnan S, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo a pyrene metabolites[J]. Analytical Chemistry, 2007, 79(5): 1897-1906.
[17] Delaney J L, Hogan C F, Tian J, et al. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors[J]. Analytical Chemistry, 2011, 83(4): 1300-1306.
[18] Hao N, Xiong M, Zhang J D, et al. Portable thermo-powered high-throughput visual electrochemiluminescence sensor[J]. Analytical Chemistry, 2013, 85(24): 11715-11719.
[19] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[20] Lin X M, Zheng L Y, Gao G M, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells[J]. Analytical Chemistry, 2012, 84(18): 7700-7707.
[21] Qi H L, Li M, Dong M M, et al. Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide[J]. Analytical Chemistry, 2014, 86(3): 1372-1379.
[22] Wightman R M, Curtis C L, Flowers P A, et al. Imaging microelectrodes with high-frequency electrogenerated chemiluminescence[J]. The Journal of Physical Chemistry B, 1998, 102(49): 9991-9996.
[23] Chang Y L, Palacios R E, Fan F R F, et al. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles[J]. Journal of the American Chemical Society, 2008, 130(28): 8906-8907.
[24] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.
[25] Miao W J, Choi J P, Bard A J. Electrogenerated chemiluminescence 69: The tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+/tri-n-propylamine (TPrA) system revisited—A new route involving TPrA? + cation radicals[J]. Journal of the American Chemical Society, 2002, 124(48): 14478-14485.
[26] Liu X Q, Shi L H, Niu W X, et al. Environmentally friendly and highly sensitive ruthenium (ii) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as Co-reactant[J]. Angewandte Chemie International Edition, 2007, 119(3): 425-428.
[27] Chang M M, Saji T, Bard A J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions[J]. Journal of the American Chemical Society, 1977, 99(16): 5399-5403.
[28] White H S, Bard A J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J]. Journal of the American Chemical Society, 1982, 104(25): 6891-6895.
[29] F?hnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis[J]. Talanta, 2001, 54(4): 531-559.
[30] Marquette C A, Blum L J. Conducting elastomer surface texturing: A path to electrode spotting: Application to the biochip production[J]. Biosensors and Bioelectronics, 2004, 20(2): 197-203.
[31] Corgier B P, Marquette C A, Blum L J. Screen-printed electrode microarray for electrochemiluminescent measurements[J]. Analytica chimica acta, 2005, 538(1): 1-7.
[32] Sardesai N P, Kadimisetty K, Faria R, et al. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins[J]. Analytical and Bioanalytical Chemistry, 2013, 405(11): 3831-3838.
[33] Venkatanarayanan A, Crowley K, Lestini E, et al. High sensitivity carbon nanotube based electrochemiluminescence sensor array[J]. Biosensors and Bioelectronics, 2012, 31(1): 233-239.
[34] Krishnan S, Hvastkovs E G, Bajrami B, et al. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine[J]. Chemical Communications, 2007, (17): 1713-1715.
[35] Pan S M, Sardesai N P, Liu H Y, et al. Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes[J]. Toxicology Research, 2013, 2(6): 375-378.
[36] Krishnan S, Hvastkovs E G, Bajrami B, et al. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays[J]. Molecular Biosystems, 2009, 5(2): 163-169.
[37] Krishnan S, Hvastkovs E G, Bajrami B, et al. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors[J]. Analytical Chemistry, 2008, 80(14): 5279-5285.
[38] Wasalathanthri D P, Malla S, Bist I, et al. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence[J]. Lab on a Chip, 2013, 13(23): 4554-4562.
[39] Marquette C, Blum L J. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline[J]. Sensors and Actuators B: Chemical, 2003, 90(1): 112-117.
[40] Zhou Z, Xu L, Wu S, et al. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst, 2014, 139(19): 4934-4939.
[41] Mavre? F O, Anand R K, Laws D R, et al. Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems[J]. Analytical Chemistry, 2010, 82(21): 8766-8774.
[42] Chow K F, Mavre F, Crooks R M. Wireless electrochemical DNA microarray sensor[J]. Journal of the American Chemical Society, 2008, 130(24): 7544-7545.
[43] Chow K F, Mavre F, Crooks J A, et al. A Large-scale, wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society, 2009, 131(24): 8364-8365.
[44] Chang B Y, Mavre F, Chow K F, et al. Snapshot voltammetry using a triangular bipolar microelectrode[J]. Analytical Chemistry, 2010, 82(12): 5317-5322.
[45] Fosdick S E, Crooks J A, Chang B Y, et al. Two-dimensional bipolar electrochemistry[J]. Journal of the American Chemical Society, 2010, 132(27): 9226-9227.
[46] Sentic M, Loget G, Manojlovic D, et al. Light-emitting electrochemical "swimmers"[J]. Angewandte Chemie International Edition, 2012, 51(45): 11284-11288.
[47] Bouffier L, Zigah D, Adam C, et al. Lighting up redox propulsion with luminol electrogenerated chemiluminescence[J]. ChemElectroChem, 2014, 1(1): 95-98.
[48] Chang B Y, Crooks J A, Chow K F, et al. Design and operation of microelectrochemical gates and integrated circuits[J]. Journal of the American Chemical Society, 2010, 132(43): 15404-15409.
[49] Chang B Y, Chow K F, Crooks J A, et al. Two-channel microelectrochemical bipolar electrode sensor array[J]. Analyst, 2012, 137(12): 2827-2833.
[50] Wu S Z, Zhou Z Y, Xu L R, et al. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis[J]. Biosensors and Bioelectronics, 2014, 53: 148-153.
[51] Zhan W, Alvarez J, Crooks R M. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. Journal of the American Chemical Society, 2002, 124(44): 13265-13270.
[52] Xu L R, Li Y, He Y Y, et al. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence[J]. Analyst, 2013, 138(8): 2357-2362.
[53] Li Y, Xu L R, He Y Y, et al. Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene[J]. Electrochemistry Communications, 2013, 33, 92-95.
[54] Xu L R(许林茹), He Y Y(何亚芸), Su B(苏彬). Development of latent fingerprints based on electrochemiluminescence imaging of luminol[J]. Chemistry(化学通报), 2014, 77(1): 86-89.
[55] Xu L, Zhou Z, Zhang C, et al. Electrochemiluminescence Imaging of Latent Fingermarks through the Immunodetection of Secretions in the Human Perspiration. Chemical Communications, 2014, 50(65): 9097-9100.