欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学近期研究专辑(厦门大学 姜艳霞教授主编)

Pt/DNA-MWCNTs/GC电极制备及其H2O2还原的电催化活性

  • 范丽丽 ,
  • 武丽娜 ,
  • 屈志宇 ,
  • 刘丹凤 ,
  • 张俊明 ,
  • 樊思明 ,
  • 樊友军
展开
  • 广西师范大学 化学与药学学院,药用资源化学与药物分子工程教育部重点实验室,广西 桂林 541004

收稿日期: 2013-12-24

  修回日期: 2014-04-15

  网络出版日期: 2014-04-20

基金资助

国家自然科学基金项目(No. 21263002)、广西自然科学基金项目(No. 2013GXNSFAA019024)、广西教育厅科学技术研究项目(No. 2013YB026)、药用资源化学与药物分子工程教育部重点实验室课题(No. CMEMR2012-A3)和广西研究生教育创新计划(No. 2010106020703M67)资助

Preparation of Pt/DNA-MWCNTs/GC Electrode and Its Electrocatalytic Activity toward H2O2 Reduction

  • FAN Li-Li ,
  • WU Li-Na ,
  • QU Zhi-Yu ,
  • LIU Dan-Feng ,
  • ZHANG Jun-Ming ,
  • FAN Si-Ming ,
  • FAN You-Jun
Expand
  • College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin 541004, Guangxi, China

Received date: 2013-12-24

  Revised date: 2014-04-15

  Online published: 2014-04-20

摘要

将DNA功能化多壁碳纳米管(MWCNTs)复合材料修饰于玻碳基底(GC)表面制得DNA-MWCNTs/GC电极,并在此基础上电沉积负载Pt纳米颗粒构建了一种新型无酶H2O2传感电极. 利用扫描电子显微镜(SEM)表征制得的修饰电极,同时通过循环伏安法和计时电流法研究了该传感电极的H2O2响应性能. 结果表明,该传感电极的H2O2检测在0.04 ~ 18.07 mmol·L-1浓度范围内成线性相关,检出限3.85 μmol·L-1S/N = 3),且有良好的重现性、稳定性与选择性.

本文引用格式

范丽丽 , 武丽娜 , 屈志宇 , 刘丹凤 , 张俊明 , 樊思明 , 樊友军 . Pt/DNA-MWCNTs/GC电极制备及其H2O2还原的电催化活性[J]. 电化学, 2014 , 20(5) : 459 -464 . DOI: 10.13208/j.electrochem.131165

Abstract

The DNA-multi-walled carbon nanotubes (MWCNTs)/glassy carbon (GC) electrode was prepared by modifying the DNA functionalized MWCNTs composite on a GC electrode. A novel non-enzymatic H2O2 sensing electrode was fabricated by electrodepositing Pt nanoparticles on the DNA-MWCNTs/GC electrode. The modified electrodes were characterized by scanning electron microscope (SEM). The response properties of the sensing electrode to H2O2 were investigated by cyclic voltammetry and chronoamperometry. The results indicated that the sensing electrode exhibited a good linear relationship between response current and H2O2 concentration in the range of 0.04 ~ 18.07 mmol·L-1 with a detection limit of 3.85 μmol·L-1 (S/N = 3), as well as excellent reproducibility, stability and selectivity.

参考文献

[1] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeledAu colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Analytica Chimica Acta, 1999, 391(1): 73-82.
[2] Li B X, Zhang Z J, Jin Y. Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents[J]. Sensors and Actuators B, 2001, 72(2): 115-119.
[3] Komagoe K, Katsu T. Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: a structure-activity relationship study related to the aggregation of porphyrin[J]. Analytical Sciences, 2006, 22(2): 255-258.
[4] Senel M, Cevik E, Abasiyanik M F. Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator[J]. Sensors and Actuators B, 2010, 145(1): 444-450.
[5] Zhou K F, Zhu Y H, Yang Y L, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites[J]. Electrochimica Acta, 2010, 55(9): 3055-3060.
[6] Jiang F X, Yue R R, Du Y K, et al. A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing[J]. Biosensors and Bioelectronics, 2013, 44(1): 127-131.
[7] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[8] Hua L(华亮), Wu X Q(吴霞琴), Wang R(王荣). Electrochemical behaviors of GC electrode modified with carbon nanotubes-polyelectrolytes and its application for rutin detection[J]. Journal of Electrochemistry(电化学), 2011, 17(3): 283-287.
[9] Liu L, Song Y G, Wang L, et al. Architecture of DNA-multiwalled carbon nanotubes-silver nanoparticles composites-modified glassy carbon electrode for hydrogen peroxide detection[J]. Environmental engineering science, 2012, 29(1): 59-63.
[10] Ma J H(马静华), Wang R X(王睿翔), Tan Y L(谭一良), et al. Preparation and methanol electrooxidation of Pt/PMo12/PEDOT/GC electrodes[J]. Journal of Electrochemistry(电化学), 2013, 19(2): 164-168.
[11] Miao Y Q, Wang H, Shao Y Y, et al. Layer-by-layer assembled hybrid ?lm of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2[J]. Sensors and Actuators B: Chemical, 2009, 138(1): 182-188.
[12] Shamsipur M, Asgari M, Mousavi M F, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of catalase immobilized on nano-sized NiO/MWCNTs composite film[J]. Electroanalysis, 2012, 24(2): 357-367.
[13] Zhang Y W, Liu S, Sun X P, et al. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing[J]. RSC Advances, 2012, (2): 538-545.
[14] Zhang Z X, Zhu H, Wang X L, et al. Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase[J]. Microchimica Acta, 2011, 174(1): 183-189.
文章导航

/