本文研究了绿脓杆菌分泌的电子中介体绿脓菌素与电极之间的反应,并探讨了溶解氧的影响. 通过循环伏安曲线、测试电极开路电位等方法,确定绿脓菌素阳极反应是受扩散控制的可逆反应. 菌液的溶解氧浓度在一定范围内(0 ~ 1.6 mg.L-1)对绿脓菌素和电极之间的反应影响不大. 微生物燃料电池的极化曲线表明,当溶解氧为1.6 mg.L-1时,微生物燃料电池输出电流下降了7%,对绿脓杆菌阳极的微生物燃料电池影响不大.
In this work, the reaction between the electron shuttle secreted by Pseudomonas aeruginosa and anode was studied by measuring cyclic voltammogram and open circuit potential. The effect of dissolved oxygen on the oxidation reaction of anode was explored. It was demonstrated that the reaction was a diffusion-controlled and reversible process. The anode was a little affected when the dissolved oxygen of inocula was low (0 ~ 1.6 mg·L-1). The polarization curves showed that the current output of microbial fuel cells decreased 7% with the impact of dissolved oxygen.
[1] Chen L X(陈立香), Xiao Y(肖勇), Zhao F(赵峰). Biocathodes in microbial fuel cells[J]. Progress in Chemistry(化学进展), 2012, 24(1): 157-162.
[2] Chi S Q(次素琴), Wu N(吴娜), Wen Z H(温珍海), et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Electrochemistry(电化学), 2012, 18(3): 243-251.
[3] Wang Z, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresource Technology, 2013, 144: 74-9.
[4] Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber[J]. Journal of Power Sources, 2007, 165(2): 591-597.
[5] Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water Research, 2005, 9(39): 1675-1686.
[6] Ajayi F F, Kim K Y, Chae K J, et al. Effect of hydrodymamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3206-3213.
[7] Fan Y, Han S K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size[J]. Energy & Environmental Science, 2012, 5: 8273-8280.
[8] Quan X, Quan Y, Tao K, et al. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs[J]. Bioresource Technology, 2012, 128: 259-265.
[9] Essar D W, Eberly L, Hadero A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications[J]. Journal of Bacteriology, 1990, 172(2): 884-900.
[10] Chang P C, Blackwood A C. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436[J]. Canadian Journal of Microbiology, 1969, 15(5): 439-444.
[11] Wang Y, Newman D K. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen[J]. Environmental Science & Technology, 2008, 42(7): 2380-2386.
[12] Watson D, MacDermot J, Wilson R, et al. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine[J]. European Journal of Biochemistry, 1986, 159(2): 309-313.
[13] Dietrich L E P, Price-Whelan A, Petersen A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa[J]. Molecular Microbiology, 2006, 61(5): 1308-1321.
[14] Hernandez M E, Newman D K. Extracellular electron transfer[J]. Cellular and Molecular Life Sciences, 2001, 58(11): 1562-1571.