欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学近期研究专辑(厦门大学 姜艳霞教授主编)

Pt-TiO2/Graphene催化剂的氧还原和甲醇氧化电催化性能研究

  • 戚利 ,
  • 殷瑛 ,
  • 涂文广 ,
  • 吴兵兵 ,
  • 王兆生 ,
  • 刘建国 ,
  • 顾军 ,
  • 邹志刚
展开
  • 1. 南京大学物理学院环境材料与再生能源研究中心,江苏 南京 210093;2. 南京大学现代工程与应用科学学院,江苏 南京 210093;3. 江苏省纳米技术重点实验室,江苏 南京 210093;4. 南京大学昆山创新研究院,江苏 南京 210093;5. 浙江省绍兴县永利新能源研究院有限公司,浙江 绍兴 312028

收稿日期: 2014-01-17

  修回日期: 2014-03-10

  网络出版日期: 2014-03-20

基金资助

国家自然科学基金项目(No. 21176111)、浙江省重大科技专项(No. 2012C11014)和绍兴县科技攻关计划项目(No. 2012506)资助

Preparation of Pt-TiO2/Graphene Composites with High Catalytic Activity towards Methanol Oxidation and Oxygen Reduction Reaction

  • QI Li ,
  • YIN Ying ,
  • TU Wen-Guang ,
  • WU Bing-Bing ,
  • WANG Zhao-Sheng ,
  • LIU Jian-Guo ,
  • GU Jun ,
  • ZOU Zhi-Gang
Expand
  • 1. Eco-materials and Renewable Energy Research Center, Nanjing University, Nanjing 210093, China; 2. College of Engineering and Applied sciences, Nanjing University, Nanjing 210093, China; 3. Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China; 4. Kunshan Innovation Institute of Nanjing University, Nanjing 210093; 5. Yong Li New Technology Research Institute Company Limited, Shaoxing 312028, Zhejiang, China

Received date: 2014-01-17

  Revised date: 2014-03-10

  Online published: 2014-03-20

摘要

以二(2-羟基丙酸)二氢氧化二铵合钛(TBA)和氧化石墨烯(GO)为前驱体,通过水热法合成出不同TiO2含量的TiO2/Graphene(TiO2/G)复合材料,随之用微波醇热法还原Pt前驱体可得Pt-TiO2/G催化剂. 实验结果表明,TiO2可与Pt相互作用,添入适量TiO2的Pt-TiO2/G催化剂具有较高的氧还原电催化活性及甲醇氧化的电催化活性与稳定性. 但TiO2电导率偏低,过量TiO2的添入反而使其电催化性能降低.

本文引用格式

戚利 , 殷瑛 , 涂文广 , 吴兵兵 , 王兆生 , 刘建国 , 顾军 , 邹志刚 . Pt-TiO2/Graphene催化剂的氧还原和甲醇氧化电催化性能研究[J]. 电化学, 2014 , 20(4) : 377 -381 . DOI: 10.13208/j.electrochem.131171

Abstract

A series of graphene-supported TiO2 nanoparticles (TiO2/G) with different TiO2 contents were prepared by a facile hydrothermal method, and then the Pt-TiO2/G catalysts were successfully prepared by reducing Pt-precursor with microwave technique. Compared with Pt-G catalysts, the catalytic performance toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) of Pt-TiO2/G catalysts was improved due to the addition of TiO2. However, the excessive TiO2 would lead to a poor catalytic performance of Pt-TiO2/G catalysts because of the low electrical conductivity of TiO2.

参考文献

[1] Helmolt R V, Eberle U. Fuel cell vehicles: Status 2007[J]. Journal of Power Sources, 2007, 165(2): 833-843.
[2] Xin Y C, Liu J G, Jie X, et al. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochimica Acta, 2012, 60: 354-358.
[3] Liu W M, Xie Y, Liu J G, et al. Experimental study of proton exchange membrane fuel cells using Nafion 212 and Nafion 211 for portable application at ambient pressure and temperature conditions[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4673-4677.
[4] Ye J L, Liu J G, Zou Z G, et al. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method[J]. Journal of Power Sources, 2010, 195(9): 2633-2637.
[5] Wu B B, Li B, Liu W M, et al. The performance improvement of membrane and electrode assembly in open-cathode proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10978-10984.
[6] Tiido K, Alexeyeva N, Couillard M, et al. Graphene-TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2013, 107: 509-517.
[7] Liu X, Chen J, Liu G, et al. Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts[J]. Journal of Power Sources, 2010, 195(13): 4098-4103.
[8] Xia B Y, Wu H B, Chen J S, et al. Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation[J]. Physical Chemistry Chemical Physics, 2012, 14(2): 473-476.
[9] Fan Y, Yang Z J, Huang P, et al. Pt/TiO2-C with hetero interfaces as enhanced catalyst for methanol electrooxidation[J]. Electrochimica Acta, 2013, 105: 157-161.
[10] Xin Y C, Liu J G, Zhou Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell[J]. Journal of Power Sources, 2011, 196(3): 1012-1018.
[11] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[12] Tu W G, Zhou Y, Liu Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-Graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013, 23(14): 1743-1749.
[13] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[14] Montero-Ocampo C, Vargas Garcia J, Arce Estrada E. Comparison of TiO2 and TiO2-CNT as cathode catalyst supports for ORR[J]. International Journal of Electrochemical Science, 2013, 8(12):1278-1280.
[15] Shim J, Lee C R, Lee H K, et al. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2001, 102(1/2): 172-177.
[16] Zhao X, Zhu J B, Liang L, et al. Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction[J]. Journal of Materials Chemistry, 2012, 22(37): 19718-19725.
[17] Qu Y T, Gao Y Z, Kong F D, et al. Pt-rGO-TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation[J]. International Journal of Hydrogen Energy, 2013, 38(28): 12310-12317.
文章导航

/