欢迎访问《电化学(中英文)》期刊官方网站,今天是
基础电化学近期研究专辑(武汉大学 陈胜利教授主编)

室温离子液体自组装金纳米粒子模板化制备内消旋多孔材料增强细胞色素c直接电化学(英文)

  • 李培 ,
  • 詹东平 ,
  • 邵元华
展开
  • 1. 厦门大学 化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005;2. 北京大学 化学与分子工程学院,分子科学国家实验室,北京 100871

收稿日期: 2013-08-23

  修回日期: 2013-12-11

  网络出版日期: 2013-12-21

基金资助

This work was supported by the National Natural Science Foundation of China (No. 21021002, No. 20235010, No. 20475003, No. 20420130137 and No. 20173058) and the special 985 project of the Peking University

Room Temperature Ionic Liquid Templated Meso-Macroporous Material by Self-Assembled Giant Gold Nanoparticles and Its Enhancement on the Direct Electrochemistry of Cytochrome c

  • LI Pei ,
  • ZHAN Dong-Ping ,
  • SHAO Yuan-Hua
Expand
  • 1. State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China; 2. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Received date: 2013-08-23

  Revised date: 2013-12-11

  Online published: 2013-12-21

Supported by

This work was supported by the National Natural Science Foundation of China (No. 21021002, No. 20235010, No. 20475003, No. 20420130137 and No. 20173058) and the special 985 project of the Peking University

摘要

室温离子液体作为一种软模板用来组装内消旋多孔材料,这种材料是由表面覆盖有半胱氨酸的自组装巨型金纳米粒子构成的. 首先,由于静电相互作用或者配体外部末端的羧基和氨基基团之间的缩合反应,覆盖有半胱氨酸的金纳米粒子能够自组装形成纳米线和亚微米球形粒子. 其次,球形自组装粒子在和疏水性室温离子液体1-辛基-3-甲基咪唑鎓六氟磷酸盐相互摩擦时能形成一种准固态凝胶. 最后,将复合凝胶涂在玻碳电极上,然后在PH = 7.4的磷酸缓冲溶液中用循环伏安法进行极化,由于多余的室温离子液体分散在溶胶中从而形成了一种内消旋多孔结构. 该材料具有良好的导电性和生物大分子亲和性. 由于大的外部表面积和内部的“薄层”效应,细胞色素c的感应显著增强. 实验结果表明,这种内消旋多孔材料在包括生物传感器和生物燃料电池在内的电化学设备方面具有潜在的应用前景.

本文引用格式

李培 , 詹东平 , 邵元华 . 室温离子液体自组装金纳米粒子模板化制备内消旋多孔材料增强细胞色素c直接电化学(英文)[J]. 电化学, 2014 , 20(4) : 323 -332 . DOI: 10.13208/j.electrochem.130882

Abstract

Room temperature ionic liquid (RTIL) is used as a soft-template to organize a meso-macroporous material constructed by self-assembled giant gold nanoparticles which are capped by L-cysteine. First, L-cysteine capped gold nanoparticles can self-assembly to form nanowires and sub-micrometer spherical giant particles due to the static interaction and/or the condensation reaction between the carboxyl and amino groups at the outer terminal of the ligand. Second, the spherical assembled particles can form a quasi-solid gel when grinding with a hydrophobic RTIL, 1-octyl-3-metyllimidazolium hexafluorophosphate. Finally, when the composite gel is coated on a glassy carbon electrode and then polarized by using cyclic voltammetry in phosphate buffer solution (PBS, pH = 7.4), a meso-macroporous structure is formed due to the leakage of the surplus of RTIL in the gel. This meso-macroporous structured material has a good conductivity and affinity to biological macromolecules. The faradaic current of cytochrome c can be enhanced significantly due to both the high outer surface area and the inner “thin-layer” effect. The experimental results indicate that this novel meso-macroporous material has potential application for electrochemical devices including biosensors and biofuel cells.

参考文献

[1] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
[2] Yuan Z, Su B. Insights into hierarchically meso-macroporous structured materials[J]. Journal of Materials chemistry, 2006, 16(77): 663-677.
[3] Taguchi A, Schuth F. Ordered mesoporous materials in catalysis[J]. Microporous and Mesoporous Materials, 2005, 77(1): 1-45.
[4] Schuth F. Engineerde porous catalyticmaterials[J]. Annual Reviews Materials Research Innovations, 2005, 35: 209-238.
[5] Van de Water, Leon G A, Maschmeyer T. Mesoporous membranes-a brief overview of recent developments[J]. Topics in Catalysis, 2004, 29(2): 67-77.
[6] Hartmann M. Ordered Mesoporous Materials for bioadsorption and biocatalysis[J]. Chemistry of Materials, 2005, 17(18): 4577-4593.
[7] Brust M, Kiely C J. Some recent advances in nanostructure preparation fron gold and silver particles: A short topical review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 202(2/3): 175-186.
[8] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications[J]. Chemical Physics and Physical Chemistry, 2000, 1(1): 18-52.
[9] Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346.
[10] Buzzeo M C, Evans R G, Compton R G. Non-haloaluminate room-temperature ionic liquids in electrechemistry-a review[J]. Chemical Physics and Physical Chemistry, 2004, 5(8): 1106-1120.
[11] Santos D H, Garcia M B, Garcia A C. Metal-nanoparticles based electroanalysis[J]. Electroanalysis, 2002, 14(18): 1225-1235.
[12] Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles[J]. Electroanalysis, 2004, 16(1/2): 19-44.
[13] Brust M, Fink J, Bethell D, et al. Synthesis and reactions of functionalized gold nanoparticles[J]. Journal of the Chemical Society-Chemical Communications, 1995, 16: 1655-1656.
[14] Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules[J]. Accounts of Chemical Research, 2000, 33(1): 27-36.
[15] Zheng W, Maye M M, Leibowitz F L, et al. Imparting biomimetic ion-gating recognition properties to electrodes with a hydrogen-bonding structured core-shell nanoparticle network[J]. Analytical Chemistry, 2000, 72(10): 2190-2199.
[16] Maye M M, Chun S C, Han L, et al. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether[J]. Journal of the American Chemical Society, 2002, 124(18): 4958-4959.
[17] Maye M M, Lim I S, Luo J, et al. Mediator-template assembly of nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(5): 1519-1529.
[18] Zhong Z, Subramanian A S, Highfield J, et al. From discrete particles to spherical aggregates: A simple approach to the self-assembly of Au colloids[J]. Chemistry-A European Journal, 2005, 11(5): 1473-1478.
[19] Ohno H. Electrochemical aspects of ionic liquids[M]. John Wiley & Sons, Inc., Hoboken,New Jersey, 2005.
[20] Zhao Q, Zhan D, Ma H, et al. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode[J]. Frontiers in Bioscience, 2005, 10(1): 326-334.
[21] Zhao Y, Gao Y, Zhan D, et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode[J]. Talanta, 2005, 66(1): 51-57.
[22] Zhao F, Wu X, Wang M, et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials[J]. Analytical Chemistry, 2004, 76(17): 4960-4967.
[23] Harbury H A, Loach P A. Oxidation-linked proton functions in hem octa- and undecapeptides from mammalian cytochrome c[J]. Journal of Biological Chemistry, 1960, 235: 3640-3647.
[24] Senn H, Wu¨thrich K. Amino acid sequence, heme-iron coordination geometry and functional properties of mitochondrial and bacterial c-type cytochromes[J]. Quarterly Reviews of Biophysics, 1985, 18(2): 111-118.
[25] AlainWalcarius. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie, 2005, 8(3/4): 693-712.
[26] Huddleston J G, Willauer H D, Swatlowski R P, et al. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction[J]. Chemical Communications, 1998, 16: 1765-1766.
[27] Ma H, Wan X, Chen X, Zhou Q. Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 41(1): 143-147.
[28] Chen S W. 4-Hydroxythiophenol-protected gold nanoclusters in aqueous media[J]. Langmuir, 1999, 15(22): 7551-7557.
[29] Chen S W. Nanoparticle assemblies. "Rectified" quantized charging in aqueous media[J]. Journal of the American Chemical Society, 2000, 122(30): 7420-7421.
[30] Amorin M, Castedo L, Granja J R. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes[J]. Journal of the American Chemical Society, 2003, 125(30): 2844-2845.
[31] Rosenthal-Aizman K, Svensson C, Unden A. Self-assembling peptide nanotubes from enantiomeric Pairs of cyclic peptides with alternating D and L amino acid residues[J]. Journal of the American Chemical Society, 2004, 126(11): 3372-3373.
[32] Nakayama K, Kawato H C, Inagaki H, et al. Novel peptidomimetics of the antifungal cyclic peptide Rhodopeptin: Design of mimetics utilizing scaffolding methodology[J]. Organic Letters, 2001, 3(22): 3447-3450.
[33] Nayak S, lyon L A. Soft nanotechnology with soft nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(47): 7686-7708.
[34] Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications (2nd edition)[M]. John Wiley & Sons, 2001: 231.
[35] Fedurco M C. Redox reactions of heme-containing metalloproteins: Dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions[J].Coordination Chemistry Reviews, 2000, 209: 263-286.
[36] Sevilla J M, Pineda T, Roman A J, et al. The direct electrochemistry of cytochrome c at a hanging mercury drop electrode modified with 6-mercaptopurine[J]. Electroanalytical Chemistry, 1998, 451(1/2): 89-93.
[37] Fleischmann M. Ultramicroelectrodes and fabrications In Ultramicroelectrodes (Eds: Fleischmann M, Pons S, Robinson D R & Schmidt P P, Datatech)[M], Systems Press, London, 1987.
[38] McKenzie K J, Marken F, Opallo M. TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry[J]. Bioelectrochemistry, 2005, 66(1/2): 41-47.
[39] McKenzie K J, Marken F. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate[J]. Langmuir, 2003, 19(10): 4327-4311.
[40] Ikeda T, Kano K J. An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells biosci[J]. Journal of Bioscience and Bioengineering, 2001, 92(1): 9-18.
[41] Wilner I, Willner B. Biomaterials integrated with electronic elements:en route to bioelectrionics[J]. Trends in Biotechnology, 2001, 19(6): 222-230
[42] Ikeda T, Kano K. Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2003, 1647(1/2): 121-126.
文章导航

/