欢迎访问《电化学(中英文)》期刊官方网站,今天是
基础电化学近期研究专辑(武汉大学 陈胜利教授主编)

Au@SiO2膜/Ti电极吸附吡啶的表面增强拉曼光谱研究

  • 徐敏敏 ,
  • 刘可 ,
  • 郭清华 ,
  • 姚建林
展开
  • College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China

收稿日期: 2013-09-13

  修回日期: 2013-11-29

  网络出版日期: 2013-12-04

基金资助

国家自然科学基金项目(No. 21073128,No. 21033007,No. 20973120)和江苏省自然科学基金项目(No. BK2012187)资助

Surface Enhanced Raman Spectroscopic Studies of Pyridine Adsorbed on Ti/Au@SiO2 Film Electrode

  • XU Min-Min ,
  • LIU Ke ,
  • GUO Qing-Hua ,
  • YAO Jian-Lin
Expand
  • 苏州大学材料与化学化工学部,江苏 苏州 215123

Received date: 2013-09-13

  Revised date: 2013-11-29

  Online published: 2013-12-04

摘要

基于壳层隔绝纳米粒子增强拉曼光谱技术,合成了Au@SiO2纳米粒子,并对其进行了相关表征. 结果表明,包裹的二氧化硅层连续、致密,Au@SiO2膜/Ti电极上可获得金属钛电极上吸附吡啶分子的高质量表面增强拉曼光谱(SERS)信号. 通过Pt、Ni电极的测试,证实该信号源于吸附在基底表面的吡啶分子. 此外,Au@SiO2膜/Ti电极上吸附吡啶分子的现场SERS光谱研究表明,在-0.1 V ~ -0.6 V电位区间,吡啶分子平躺吸附,从-0.6 V起吸附的吡啶分子由平躺逐转变为垂直,而当电位为-1.2 V时,电极表面析氢,吡啶脱附.

本文引用格式

徐敏敏 , 刘可 , 郭清华 , 姚建林 . Au@SiO2膜/Ti电极吸附吡啶的表面增强拉曼光谱研究[J]. 电化学, 2014 , 20(3) : 272 -276 . DOI: 10.13208/j.electrochem.130888

Abstract

This study was performed based on shell-isolated nanoparticles-enhanced Raman spectroscopy (SHINERS) technology. The Au@SiO2 nanoparticles were prepared and characterized by TEM and cyclic voltammetry. It was shown that the shell of SiO2 was compact. The high quality signal measured by surface enhanced Raman spectroscopy (SERS) was obtained from the adsorbed pyridine on Ti/Au@SiO2 electrode. The origin of the SERS signals was further confirmed by testing Pt and Ni electrodes. In addition, potential dependent adsorption behavior was investigated. It was found that pyridine was adsorbed parallel on the surface from -0.1 V to -0.6 V, and converted to perpendicular adsorption from -0.6 V. At last, pyridine was desorbed from the electrode accompanied with hydrogen evolution when the potential moved to -1.2 V.

参考文献

[1] Fushimi K, Okawa T, Azumi K, et al. Oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope[J]. Journal of the Electrochemical Society, 2000, 147(2): 524-529.
[2] Parkera E R, Thibeaultb B J, Aimic M F, et al. Inductively coupled plasma etching of bulk titanium for MEMS applications[J]. Journal of the Electrochemical Society, 2005, 152(10): C675-C683.
[3] Riedel N A, Williams J D, Popat K C. Ion beam etching titanium for enhanced osteoblast response[J]. Journal of Materials Science, 2011, 46(18): 6087-6095.
[4] Ren B, Huang Q J, Cai W B, et al. Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes[J]. Journal of Electroanalytical Chemistry, 1996, 415(1/2): 175-178.
[5] Gao J S, Tian Z Q. Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates[J]. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy, 1997, 53(10): 1595-1600.
[6] Huang Q J, Yao J L, Gu R A, et al. Surface Raman spectroscopic studies of pyrazine adsorbed onto nickel electrodes[J]. Chemical Physics Letters, 1997, 271(1/3): 101-106.
[7] Qin W(秦维), Yao J L(姚建林), Gu R A(顾仁敖). Studies of surface-enhanced Raman spectroscopy on bare Ti electrode[J]. Spectroscopy And Spectral Analysis(光谱学与光谱分析), 2009, 29(12): 3300-3303.
[8] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464: 392-395.
[9] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241: 20-22.
[10] Bilmes S A, Rubim J C, Otto A. SERS from pyridine adsorbed on electrodispersed platinum electrodes[J]. Chemical Physics Letters, 1989, 159(1): 89-96.
[11] Walters V A, Snavely D L, Colson S D, et al. New vibrational constants for pyridine from low-temperature and high-resolution infrared spectra[J]. The Journal of Physical Chemistry, 1986, 90(4): 592-597.
[12] Wiberg K B, Walters V A, Wong K N, et al. Azines: Vibrational force field and intensities for pyridine[J]. The Journal of Physical Chemistry, 1984, 88(24): 6067-6075.
[13] Zhao L L, Jensen L, Schatz G C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering[J]. Journal of the American chemical society, 2006, 128(9): 2911-2919.
[14] Huang Q J, Lin X F, Yang Z L, et al. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J]. Journal of Electroanalytical Chemistry, 2004, 563(1): 121-131.
[15] Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver[J]. The Journal of physical Chemistry, 1984, 88(23): 5526-5530.
文章导航

/