欢迎访问《电化学(中英文)》期刊官方网站,今天是
基础电化学近期研究专辑(武汉大学 陈胜利教授主编)

结构转变方式对光致变色分子开关输运性能影响的从头计算研究(英文)

  • 贺园园 ,
  • 赵健伟
展开
  • 南京大学 化学化工学院,生命分析化学国家重点实验室,江苏 南京 210008

收稿日期: 2013-08-08

  修回日期: 2013-11-05

  网络出版日期: 2013-11-10

基金资助

This work was supported by National Natural Science Foundation of China (Nos. 51071084, 21273113, 21121091 and 11204120) and National Key Technology R&D Program of China (No. 2012BAF03B05)

Effects of Conformational Transformations on Electronic Transport Properties of Optical Molecular Switches: An ab initio Study

  • HE Yuan-Yuan ,
  • ZHAO Jian-Wei
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China

Received date: 2013-08-08

  Revised date: 2013-11-05

  Online published: 2013-11-10

Supported by

This work was supported by National Natural Science Foundation of China (Nos. 51071084, 21273113, 21121091 and 11204120) and National Key Technology R&D Program of China (No. 2012BAF03B05)

摘要

采用密度泛函理论方法系统地研究了由不同结构转变方式引发的一系列光致变色分子在用于分子开关时的电子输运性质. 对各种分子结构转变前后的最高占据轨道(HOMO)与最低空轨道(LUMO)的能级间隙(HLG)、前线轨道的空间分布、电子透射谱和投影电子态密度(PDOS)谱进行了计算和讨论. 结果表明,相似的结构转变方式通常造成分子具有相似的电流开关性质,这与分子的共轭程度又有一定的关系. 比较各种分子的电流开关比后发现偶氮苯结构单元具有最大的电流开关比.

本文引用格式

贺园园 , 赵健伟 . 结构转变方式对光致变色分子开关输运性能影响的从头计算研究(英文)[J]. 电化学, 2014 , 20(3) : 243 -259 . DOI: 10.13208/j.electrochem.130881

Abstract

A series of model molecules with 4 kinds of conformational transformations have been investigated as optical molecular switches by using density functional theory combined with nonequilibrium Green’s function method. The theoretical calculations show that molecules after conformational transformations have photoswitching characteristics. We find that the photochromic molecules with the same conformational transformation usually have a similar current on/off state when they are applied as photoshwitches. Among these transformations, the molecular switch with E(“trans”)/Z(“cis”)-isomerisation of the NN double bond has the highest current on-off ratio. The influences of the energy gap (HLG) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), spatial distributions, transmission and projected density of states (PDOS) spectra on the electronic transport through the optical molecular switches are discussed in detail.

参考文献

[1] Feringa B L. In control of motion: From molecular switches to molecular motors[J]. Accounts of Chemical Research, 2001, 34(6): 504-513.
[2] Irie M. Diarylethenes for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1685-1716.
[3] Tian H, Yang S J. Recent progresses on diarylethene based photochromic switches[J]. Chemical Society Reviews, 2004, 33(2): 85-97.
[4] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555.
[5] Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications[J]. Chemical Reviews, 2003, 103(7): 2475-2532.
[6] Delaire J A, Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials[J]. Chemical Reviews, 2000, 100(5): 1817-1845.
[7] Renth F, Siewertsen R, Temp F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides[J]. International Reviews in Physical Chemistry, 2013, 32(1): 1-38.
[8] Collier C P, Mattersteig G, Wong E W, et al. A [2]catenane-based solid state electronically reconfigurable switch[J]. Science, 2000, 289(18): 1172-1175.
[9] Zheng C H, Pu S Z, Pang Z Y, et al. Syntheses and photochromism of new isomeric diarylethenes bearing an indole moiety[J]. Dyes and Pigments, 2013, 98(3): 565-574.
[10] Heshmat B, Pahlevaninezhad H, Darcie T E. Optical efficiency enhancement methods for terahertz receiving photoconductive switches[J]. Optics & Laser Technology, 2013, 54: 297-302.
[11] Coelho P J, Castro M C R, Raposo M M M. Reversible trans-cis photoisomerization of new pyrrolidene heterocyclic imines[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259: 59-65.
[12] Dulic D, van der Molen S J, Kudernac T, et al. One-way optoelectronic switching of photochromic molecules on gold[J]. Physical Review Letters, 2003, 91(20): 207402-1-4.
[13] Schenderlein H, Voss A, Stark R W, et al. Preparation and characterization of light-switchable polymer networks attached to solid substrates[J]. Langmuir, 2013, 29(14): 4525-4534.
[14] Zhao L Y, Hou Q F, Sui D, et al. Multistate/multifunctional switches based on photochromic Schiff base[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2007, 67(3/4): 1120-1125.
[15] Plaquet A, Guillaume M, Champagne B, et al. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches[J]. Physical Chemistry Chemical Physics, 2008, 10(41): 6223-6232.
[16] Jankowska J, Rode M F, Sadlej J, et al. Photophysics of schiff bases: Theoretical study of salicylidene methylamine[J]. ChemPhysChem, 2012, 13(18): 4287-4294.
[17] Grzegorzek J, Filarowski A, Mielke Z. The photoinduced isomerization and its implication in the photo-dynamical processes in two simple Schiff bases isolated in solid argon[J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16596-16605.
[18] Maurer R J, Reuter K. Assessing computationally efficient isomerization dynamics: Delta SCF density-functional theory study of azobenzene molecular switching[J]. The Journal of Chemical Physics, 2011, 135(22): 224303-1-10.
[19] Satzger H, Root C, Braun M. Excited-state dynamics of trans- and cis-azobenzene after UV excitation in the ππ* band[J]. The Journal of Physical Chemistry A, 2004, 108(30): 6265-6271.
[20] Perrier A, Maurel F, Jacquemin D. Single molecule multiphotochromism with diarylethenes[J]. Accounts of Chemical Research, 2012, 45(8): 1173-1182.
[21] Taguchi M, Nakagawa T, Nakashima T, et al. Photochromic and fluorescence switching properties of oxidized triangle terarylenes in solution and in amorphous solid states[J]. Journal of Materials Chemistry, 2011, 21(43): 17425-17432.
[22] Miskolczy S, Biczok L. Photochromism of a merocyanine dye bound to sulfonatocalixarenes: effect of pH and the size of macrocycle on the kinetics[J]. The Journal of Physical Chemistry B, 2013, 117(2): 648-653.
[23] Villeneuve C H, Michalik F, Chazalviel J N, et al. Quantitative IR readout of fulgimide monolayer switching on Si(111) surfaces[J]. Advanced Materials, 2013, 25(3): 416-421.
[24] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555.
[25] Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1741-1753.
[26] Hadjoudis E, Rontoyianni A, Ambroziak K, et al. Photochromism and thermochromism of solid trans-N,N′-bis-(salicylidene)-1,2-cyclohexanediamines and trans-N,N′-bis-(2-hydroxy-naphylidene)-1,2-cyclohexane-diamine[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2/3): 521-530.
[27] Shinkai S. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 281.
[28] Irie M. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 37.
[29] Seminario J M, Politzer P. Molecular density functional theory a tool for chemistry[M]. Elesvier, Amsterdam, 1995.
[30] Frisch M J, Trucks G W, Schlege H B, et al. GAUSSIAN 03, Wallingford CT, 2004.
[31] Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[32] Salzner U, Lagowski J B, Pickup P G, et al. Design of low band gap polymers employing density functional theory-hybrid functionals ameliorate band gap problem[J]. Journal of Computational Chemistry, 1997, 18(15): 1943-1953.
[33] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1): 270-284.
[34] Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics, 1985, 82(1): 284-298.
[35] Dunning T H, Hay P J. In Schaefer H F. Modern theoretical chemistry(III Ed.)[M]. New York: Plenum Press, 1976: 1-28.
[36] Gronbeck H, Curioni A, Andreoni W. Thiols and disulfides on the Au(111) surface: The headgroup-gold interaction[J]. Journal of the American Chemical Society, 2000, 122(16): 3839-3842.
[37] Yin X, Liu H M, Zhao J W. Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: Studied by first principles nonequilibrium Green’s function formalism[J]. Journal of Chemical Physics, 2006, 125(9): 094711-1-6.
[38] Liu H M, Li P, Zhao J W, et al. Theoretical investigation on molecular rectification on the basis of asymmetric substitution and proton transfer reaction[J]. Journal of Chemical Physics, 2008, 129(22): 224704-1-6.
[39] Stokbro K, Taylor J, Brandbyge M. Do Aviram-Ratner diodes rectify?[J]. Journal of the American Chemical Society, 2003, 125(13): 3674-3675.
[40] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Physica B-Condensed Matter, 2011, 406(4): 895-898.
[41] Fan Z Q, Zhang Z H, Ming Q, et al. First-principles study of repeated current switching in a bimolecular device[J]. Computational Materials Science, 2012, 53(1): 294-297.
[42] Atomistix ToolKit, QuantumWise A/S, www.quantumwise.com (access 2006).
[43] Yaliraki S N, Roitberg A E, Gonzalez C, et al. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description[J]. The Journal of Chemical Physics, 1999, 111(15): 6997-7002.
[44] Hall L E, Reimers J R, Hush N S, et al. Formalism, analytical model, and a priori Green’s-function-based calculations of the current-voltage characteristics of molecular wires[J]. The Journal of Chemical Physics, 2000, 112(3): 1510-1521.
[45] Tomfohr J, Sankey O F. Theoretical analysis of electron transport through organic molecules[J]. The Journal of Chemical Physics, 2004, 120(3): 1542-1554.
[46] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Journal of Physics: Condensed Matter, 2011, 406(4): 895-898.
[47] Zhao W K, Yang C L, Wang M S, et al. Effects of electrode orientation on the transport properties of pyridine-terminated dithienylethene light molecule switch under bias[J]. Solid State Communications, 2013, 153(1): 1-7.
[48] Datta S. Electronic transport in mesoscopic systems[M]. Cambrideg University Press, New York, 1995.
[49] Castro P J, Gomez I, Cossi M, et al. Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines[J]. The Journal of Physical Chemistry A, 2012, 116(31): 8148-8158.
[50] Buttiker M. Four-terminal phase-coherent conductance[J]. Physical Review Letters, 1986, 57(14): 1761-1764.
[51] Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region[J]. Physical Review Letters, 1992, 68(16): 2512-2515.
[52] Yin X, Li Y W, Zhang Y, et al. Theoretical analysis of geometry-correlated conductivity of molecular wire[J]. Chemical Physics Letters, 2006, 422(1/3): 111-116.
[53] Seminario J M, Zacarias A G, Tour J M. Theoretical study of a molecular resonant tunneling diode[J]. Journal of the American Chemical Society, 2000, 122(13): 3015-3020.
[54] Hanif M, Lu P, Li M, et al. Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinonealt-dialkylfluorene conjugated copolymer[J]. Polymer International, 2007, 56(12): 1507-1513.
[55] Knyazhansky M I, Metelitsa A V, Kletskii M E, et al. The structural transformations and photo-induced processes in salicylidene alkylimines[J]. Journal of Molecular Structure, 2000, 526: 65-79.
[56] Zhou Y H, Yuan L Z, Zheng X H. Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent[J]. Computational Materials Science, 2012, 61: 145-149.
[57] B?ckmann M, Doltsinis N L, Marx D. Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation[J]. Journal of Chemical Physics, 2012, 137(22): 22A505-1-10.
[58] Siewertsen R, Sch?nborn J B, Hartke B, et al. Superior Z-E and E-Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at k = 387 and 490 nm[J]. Physical Chemistry Chemical Physics, 2011, 13(3): 1054-1063.
[59] Xia C J, Liu D S, Liu H C. Phenylazoimidazole as a possible optical molecular switch: An ab initio study[J]. Optik, 2012, 123(14): 1307-1310.
[60] Wolak M A, Thomas C J, Gillespie N B, et al. Tuning the optical properties of fluorinated indolylfulgimides[J]. Journal of Organic Chemistry, 2003, 68(2): 319-326.
[61] Zhao P, Wang P J, Zhang Z, et al. Electronic transport properties of a diarylethene-based molecular switch with single-walled carbon nanotube electrodes: The effect of chirality[J]. Solid State Communications, 2009, 149(23/24): 928-931.
文章导航

/