欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究快讯

钠离子电池正极材料Na2MnPO4F的23Na MAS NMR谱研究

  • 侯旭 ,
  • 钟贵明 ,
  • 林晓琛 ,
  • 刘子庚 ,
  • 吴晓彪 ,
  • 杨勇
展开
  • 厦门大学 化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005

收稿日期: 2014-04-01

  修回日期: 2014-04-14

  网络出版日期: 2014-04-21

基金资助

973国家重点基础研究发展计划(No. 2011CB935903)和国家自然科学基金(No. 21233004、No. 21021002)项目资助

23Na MAS NMR Spectroscopic Study of Na2MnPO4F as Cathode Material for Sodium-Ion Battery

  • HOU Xu ,
  • ZHONG Gui-Ming ,
  • LIN Xiao-Chen ,
  • LIU Zi-Geng ,
  • WU Xiao-Biao ,
  • YANG Yong
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2014-04-01

  Revised date: 2014-04-14

  Online published: 2014-04-21

摘要

Na2MnPO4F材料是一种很有发展前景的钠离子电池正极材料,本文通过非原位XRD和固体核磁共振技术研究该材料充放电结构变化(晶体结构与局域Na位). 非原位XRD测试发现,充电过程在2θ为31o和36o左右出现新的衍射峰,表明钠脱出后电极上有中间相物质生成. 23Na MAS NMR谱图的-209 ppm、-258 ppm和-295 ppm三个谱峰分别对应于该材料结构中Na1 + Na2位、Na3位和Na4位. 非原位23Na MAS NMR谱研究发现,充电过程中-209 ppm处信号峰面积比例减小,表明Na1和Na2位的Na比Na3和Na4位先脱出. 充电至4.2 V,-132 ppm和-330 ppm处出现中间相物质的信号峰;而放电过程则相反.

本文引用格式

侯旭 , 钟贵明 , 林晓琛 , 刘子庚 , 吴晓彪 , 杨勇 . 钠离子电池正极材料Na2MnPO4F的23Na MAS NMR谱研究[J]. 电化学, 2014 , 20(3) : 201 -205 . DOI: 10.13208/j.electrochem.140401

Abstract

The Na2MnPO4F is one of the promising cathode materials for the sodium ion batteries. In the paper, we employed the ex situ X-ray diffraction and solid state NMR techniques to study the charge and discharge processes of this material, including the crystal structure and sodium sites changes. The ex situ x-ray diffraction patterns showed that two new diffraction peaks could be observed at 31o and 36o indicating an intermediate phase formed with the extraction of Na+. From the 23Na MAS NMR spectrum of the material, three peaks were seen at -209 ppm,-258 ppm and -295 ppm, which can be assigned to Na1 + Na2, Na3 and Na4 sites in the crystal structure, respectively. The ex situ solid state NMR study demonstrated that the Na+ in Na1 and Na2 sites deintercalated firstly compared to Na3 and Na4 sites. The signal peaks of intermediate phase appeared at -132 ppm and -330 ppm when charging to 4.2 V. The opposite phenomenon occurred during the discharge process.

参考文献

[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
[3] Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[4] Barpanda P, Chotard J N, Recham N, et al. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes[J]. Inorganic Chemistry, 2010, 49(16): 7401-7413.
[5] Hao X G (郝小罡), Liu Z G (刘子庚), Gong Z L (龚正良), et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica (中国科学:化学), 2012, 42(1): 38-46.
[6] Ellis B L, Makahnouk W R M, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-753.
[7] Wu X, Zheng J, Gong Z, et al. Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1-xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery[J]. Journal of Materials Chemistry, 2011, 21(46): 18630-18637.
[8] Kim S W, Seo D H, Kim H, et al. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14(10): 3299-3303.
[9] Zhong Y J (钟艳君), Li J T (李君涛), Wu Z G (吴振国), et al. Synthesis of Na2MnPO4F/C with different carbon sources and their performances as cathode for lithium ion battery[J]. Acta Physico-Chimica Sinica (物理化学学报), 2013, 29(9): 1989-1997.
[11] Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries[J]. Solid State Sciences, 2003, 5(6): 883-894.
[10] Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
[12] Zhong G M (钟贵明), Hou X (侯旭), Chen S S (陈守顺), et al. Solid-state NMR study of electrode/electrolyte materials for lithium ion batteries (in Chinese)[J]. Chinese Science Bulletin (科学通报), 2013, 58(32): 3287-3300.
[13] Jian Z, Yuan C, Han W, et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2014, doi: 10.1002/adfm.201400173.
[14] Davis L J M, Heinmaa I, Goward G R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D exchange MAS NMR spectroscopy[J]. Chemistry of Materials, 2009, 22(3): 769-775.
[15] Zheng Y, Zhang P, Wu S Q, et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(6): A927-A932.
文章导航

/