采用Hummers法制得氧化石墨,再经溶剂热法一步合成石墨烯-氧化锌复合材料(GZO). 在6 mol·L-1氢氧化钾电解液中,测试循环伏安曲线、交流阻抗谱图和计时电位曲线. 结果表明,石墨烯-氧化锌复合材料电极的比电容为115 F·g-1,具有较好的循环寿命,改善了超级电容器的性能.
In this work, the graphene-ZnO nanocomposite was successfully synthesized through a one-step solvothermal approach, using ethylene glycol as the solvent and reducing agent. The ZnO particles could be attached to the surfaces and edges of graphene sheet. The electrochemical performance of the nanocomposite was investigated by performing cyclic voltammetry, A.C. impedance and chronopotentiometry tests in 6 mol·L-1 KOH. The results showed that the graphene-ZnO nanocomposite exhibited a nice electrochemical specific capacitance of 115 F·g-1 determined in cyclic voltammetry test, or 71 F·g-1 evaluated in chronopotentiometry test and good reversible charge/discharge behavior.
[1] Li D, Kaner R B. Graphene-based materials[J]. Science, 2008, 320(5880): 1170-1171.
[2] Si Y, Samulski E T. Synthesis of water soluble graphene[J]. Nano Letters, 2008, 8(6): 1679-1682.
[3] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-Assisted photo catalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491.
[4] Li X L, Wang X R, et al. Chemically derived ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
[5] Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters, 2009, 9(1): 72-75.
[6] Lu T, Zhang Y, Li H, et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors[J]. Electrochimica Acta, 2010, 55(13): 4170-4173.
[7] Ramadoss A, Kim S J. Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2013, 140(1): 405-411.
[8] Dong X C, Cao Y F, Wang J, et al. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications[J]. RSC Advances, 2012, 2(10): 4364-4369.
[9] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[10] Li Q, Li Z, Chen M, et al. Real-time study of graphene’s phase transition in polymer matrices[J]. Nano Letters, 2009, 9(5): 2129-2132.
[11] Xu C, Wang X, Zhu J W. Graphene metal particle nanocomposites[J]. The Journal of Physical Chemistry C, 2008, 122(50): 19841-19845.
[12] Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents[J]. Journal of Materials Chemistry, 2007, 17(35): 3678-3680.
[13] Obraztsov A N. Chemical vapour deposition: Making grapheme on a large scale[J]. Nature Nanotechnology, 2009, 4: 212-213.
[14] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nano sheets via chemical reduction of exfoliated grapheme oxide[J]. Carbon, 2007, 45: 1558-1565.
[15] Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxideina wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
[16] Nethravathi C, Rajamathi M. Colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols[J]. Carbon, 2008, 46: 1994-1998.
[17] Matsuo Y, Miyabe T, Fukutsuka T, et al. Preparation and characterization of alkylamine-intercalated graphite oxides[J]. Carbon, 2007, 45: 1005-1012.