欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

氧化还原电池组等效电路模型

  • 尤东江 ,
  • 张华民
展开
  • 1. 中国船舶重工集团公司第七一八研究所,河北 邯郸 056027;2. 中国科学院大连化学物理研究所,辽宁 大连 116023

收稿日期: 2013-04-17

  修回日期: 2013-07-08

  网络出版日期: 2014-04-17

An Equivalent Circuit Model for Redox Flow Battery Stack

  • YOU Dong-Jiang ,
  • ZHANG Hua-Min
Expand
  • 1. The 718th Research Institute of CSIC, 056027, Handan, China; 2. Dalian Institute of Chemical Physics, CAS, 116023, Dalian, China

Received date: 2013-04-17

  Revised date: 2013-07-08

  Online published: 2014-04-17

摘要

本文综合考虑氧化还原二次电池内部的电化学反应和电池组漏电电流,建立了氧化还原电池组的等效电路模型. 以1 kW额定输出功率的全钒液流储能电池组为例,测试电池组暂态响应和自放电曲线,确定了等效电路模型的重要参数,比较模拟结果与实验结果,计算电池组的内阻和自放电电流,可知漏电电流造成的容量损失约占系统总容量损失的60%左右.

本文引用格式

尤东江 , 张华民 . 氧化还原电池组等效电路模型[J]. 电化学, 2014 , 20(2) : 156 -163 . DOI: 10.13208/j.electrochem.130417

Abstract

This paper introduces an equivalent circuit model for a redox flow battery stack. The model combines the electrochemical reaction of the battery cell and the shunt current of the battery stack. An all-vanadium redox flow battery stack of 1kW rated output power is tested through transient response and self-discharge experiments. All the parameters used for the modeling are obtained. Calculated shunt current and distribution of calculated battery voltage are shown in the results. It is concluded that the impedance of the battery stack can be obtained by the experimental results of the transient response and self-discharge measurements. The capacity lose of about 60% for the battery system is caused by the shunt current.

参考文献

[1] Rou?ar I, Cezner V. Experimental determination and calculation of parasitic currents in bipolar electrolyzers with application to chlorate electrolyzer[J]. Journal of The Electrochemical Society, 1974, 121(5): 648-651.
[2] Katz M. Analysis of electrolyte shunt currents in fuel cell power plants[J]. Journal of The Electrochemical Society, 1978, 125(4): 515-520.
[3] Kanari K, et al. Numerical analysis on shunt current loss in a redox flow battery[C]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1989 (57): 517-522.
[4] Burney H S, White R E. Predicting shunt currents in stacks of bipolar plate cells with conducting manifolds[J]. Journal of The Electrochemical Society, 1986, 135(7): 1609-1612.
[5] Codina G, Aldaz A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22: 668-674.
[6] Minghua Li, et al. A Study of output terminal voltage modeling for redox flow battery based on charge and discharge experiments[C]//Power Conversion Conference-Nagoya, April 2-5, 2007: 221-225.
[7] Sukkar T, Skyllas-Kazacos M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery[J]. Journal of Membrane Science, 2003, 222(1/2): 235-247.
[8] Enomoto K, et al. Evaluation study about redox flow battery response and its modeling[C]. IEEJ Trans. PE, 2002, (122-B): 554-559.
[9] Brian E B, Pell W G, Liu T C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries[J]. Journal of Power Sources, 1997, 65(1/2): 53-59.
文章导航

/