欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

水溶液中电化学沉积GaSb相变存储薄膜

  • 熊钰林 ,
  • 潘元春 ,
  • 萨百晟 ,
  • 周健 ,
  • 孙志梅
展开
  • 厦门大学材料学院材料科学与工程系,福建 厦门 361005

收稿日期: 2013-03-24

  修回日期: 2013-05-10

  网络出版日期: 2014-04-17

基金资助

中央高校基本科研业务费专项资金(No. 2010121054, 201112G016)资助

Electrochemical Deposition of GaSb Thin Films for Phase Change Memory in Aqueous Solutions

  • XIONG Yu-Lin ,
  • PAN Yuan-Chun ,
  • SA Bai-Sheng ,
  • ZHOU Jian ,
  • SUN Zhi-Mei
Expand
  • Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2013-03-24

  Revised date: 2013-05-10

  Online published: 2014-04-17

摘要

利用恒电位共沉积技术和热处理的方法成功制备了GaSb薄膜,探索了添加乙二醇溶剂对薄膜结晶性和形貌的影响. 采用循环伏安法初步研究了共沉积GaSb的机理,并用X-射线衍射技术(XRD)、扫描电子显微技术(SEM)和能谱分析(EDS)表征、观察样品. 研究表明,在沉积过程中,SbO+先还原成Sb单质,再诱导Ga3+发生共沉积;沉积电位对薄膜的结晶性、微观形貌和成分有显著影响;电解液加入乙二醇更利于在较正电位下直接沉积出GaSb,且有效地提高了薄膜的结晶度,改善了薄膜的微观形貌.

本文引用格式

熊钰林 , 潘元春 , 萨百晟 , 周健 , 孙志梅 . 水溶液中电化学沉积GaSb相变存储薄膜[J]. 电化学, 2014 , 20(2) : 134 -138 . DOI: 10.13208/j.electrochem.130322

Abstract

The synthesis of GaSb thin films has been successfully performed by a method involving one-step potentiostatic electrodeposition and thermal annealing. The effect of ethylene glycol as a solvent in aqueous electrolyte solution on the crystallinity and morphology of the prepared thin films was discussed. The electrodeposition mechanisms of GaSb were studied by cyclic voltammetry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to analyze structure, morphology and composition of the thin films. The results show that SbO+ is first reduced to Sb, and Ga3+ is deposited via the induced co-deposition mechanism. The deposition potential has great effect on the crystallinity, morphology and composition of the GaSb thin films. Ethylene glycol in the aqueous electrolyte solution is beneficial to deposit GaSb directly at more positive potential, and effective to improve the crystallinity and microstructure of the thin films.

参考文献

[1] Ovshinsky S R, Fritzsche H. Reversible structural transformations in amorphous semiconductors for memory and logic[J]. Metallurgical Transactions, 1971, 2(3): 641-645.
[2] Aspnes D E, Studna A A. Dielectric functions and optical-parmeters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV[J]. Physical review B, 1983, 27(2): 985-1009.
[3] Gosain D P, Nakamura M, Shimizu T, et al. Non-volatile memory based on reversible phase transition phenomena in telluride glasses[J]. Japanese Journal of Applied Physics, 1989, 28(6): 1013-1018.
[4] Ramesh K, Asokan S, Sangunni K S, et al. Electrical switching in germanium telluride glasses doped with Cu and Ag[J]. Applied Physics A: Materials Science & Processing, 1999, 69(4): 421-425.
[5] Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory[J]. Journal of Applied Physics , 1991, 69(5): 2849-2854.
[6] Kang D H, Ahn D H, Kim K B, et al. One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F = 0.15 μm)[J]. Japanese Journal of Applied Physics, 2003, 94(5): 3536-3542.
[7] Gravesteijn D J, van Tongeren H M, Sens M, et al. Phase-change optical data storage in GaSb[J]. Applied Optics, 1987, 26(22): 4772-4772.
[8] Gravesteijn D J. Materials developments for write-once and erasable phase-change optical recording[J]. Applied Optics, 1988, 27(4): 736-738.
[9] Massalski T B, Okamoto H , Subramanian P R, et al. Binary alloy phase diagrams ( 2nd Edition)[M]. America: American Society for Metals, 1990: 1851.
[10] Nguyen T, Varhue W, Cross M, et al. Structural evolution and characterization of heteroepitaxial GaSb thin films on Si(111) substrates[J]. Journal of Applied Physics, 2007, 101(7): 1063-1070.
[11] Mouleeswara D, Dhanasekaran R. Growth kinetic model for liquid phase electro epitaxial growth of GaSb[J]. Indian Journal of Engineering and Materials Sciences, 2006, 13(3): 231-237.
[12] Levin R V, Vlasov A S, Matveev B A ,et al. Properties of the GaSb epitaxial layers obtained by the MOCVD method[J]. Semiconductors, 2006, 40(12): 1393-1397.
[13] Li Y B, Zhang Y, Zhang Y W, et al. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs(001) substrates[J]. Applied Surface Science, 2012, 258(17): 6571-6575.
[14] Miya S S, Wagener V, Botha J R, et al. Optimization of growth parameters for MOVPE-grown GaSb and Ga1-xInxSb[J]. Physica B: Physics of Condensed Matter, 2012, 407(10): 1611-1614.
[15] Tourky A R, Khairy E M. Studies on some metal electrodes. Part IX. The temperature coefficients of the copper and antimony electrodes in solutions initially free from their ions. The mode of oxidation of these metals[J]. Journal of the Chemical Society, 1952, 2626-2633.
[16] Paolucci F, Mengoli G , Musiani M M. An electrochemical route to GaSb thin films[J]. Journal of Applied Electrochemistry, 1990, 20(5): 868-873.
[17] McChesney J J, Haigh J, Dharmadasa I M, et al. Electrochemical growth of GaSb and InSb for applications in infra-red detectors and optical communication systems[J]. Optical Materials, 1996, 6(1/2): 63-67.
[18] Leimkühler G, Kerkamm I, Reineke-Koch R. Electrodeposition of antimony telluride[J]. Journal of the Electrochemical Society, 2002, 149(10): 474-478.
文章导航

/