欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

PP14TFSI离子液体在可充镁电池电解液的应用

  • 朱金杰 ,
  • 王菲菲 ,
  • 郭永胜 ,
  • 杨军 ,
  • 努丽燕娜 ,
  • 王久林
展开
  • 上海交通大学化学化工学院,平野材料创新研究所,上海 200240

收稿日期: 2013-07-16

  修回日期: 2013-10-17

  网络出版日期: 2014-04-17

Application of Ionic Liquid PP14TFSI in Electrolyte Systems for Rechargeable Mg Batteries

  • ZHU Jin-Jie ,
  • WANG Fei-Fei ,
  • GUO Yong-Sheng ,
  • YANG Jun ,
  • NU Li-Yan-Na ,
  • WANG Jiu-Lin
Expand
  • School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2013-07-16

  Revised date: 2013-10-17

  Online published: 2014-04-17

摘要

制备了可充镁电池电解质苯酚基镁盐,以四氢呋喃(THF)与N-甲基-N-丁基-哌啶-双三氟甲基磺酰胺(PP14TFSI)离子液体混合物代替四氢呋喃作为该电解质的溶剂. 当THF与PP14TFSI体积配比为1:1时,该苯酚基镁盐电解液镁可逆溶出性能最佳,电化学窗口宽(2.7 V vs. Mg),离子电导率高(7.77 mS·cm-1). 此外,热重测试表明离子液体的加入大大降低了THF溶剂的挥发性,提高了可充镁电池的安全性能. 四氢呋喃 + N-甲基-N-丁基-哌啶-双三氟甲基磺酰胺混合溶剂有望作为可充镁电池电解液的首选溶剂.

本文引用格式

朱金杰 , 王菲菲 , 郭永胜 , 杨军 , 努丽燕娜 , 王久林 . PP14TFSI离子液体在可充镁电池电解液的应用[J]. 电化学, 2014 , 20(2) : 128 -133 . DOI: 10.13208/j.electrochem.130726

Abstract

A phenolated-based Mg salt was prepared. The mixture of THF and N-methyl-N-butyl-piperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI) serves as the mixed solvent instead of pure THF for rechargeable Mg batteries systems. This new type of electrolyte system not only has optimal reversibility of Mg, but also owns a wide electrochemical window (2.7 V vs. Mg) and high ionic conductivity (7.77 mS·cm-1). More importantly, the addition of Ionic Liquid suppresses the volatility of THF and improves the safety of rechargeable Mg batteries. The result shows that the mixture of THF and piperidyl-based Ionic Liquid could be regarded as a good solvent candidate for rechargeable Mg batteries.

参考文献

[1] Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium[J]. Journal of Electrochemical Society, 1990, 137(3): 775-780.
[2] Novak P, Imhof R. Magnesium insertion electrodes for rechargeable nonaqueous batteries — A competitive alternative to lithium?[J]. Electrochimica Acta, 1999, 45(1): 351-367.
[3] Nuli Yanna, Yang J, Li Y S, et al. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries[J]. Chemical Communications, 2010, 46(21): 3794-3796.
[4] Besenhard J O, Winter M. Advances in battery technology: Rechargeable magnesium batteries and novel negative electrode materials for lithium ion batteries[J]. ChemPhysChem, 2002, 3(2): 155-159.
[5] Masaki M. Study on electrochemically deposited Mg metal[J]. Journal of Power Sources, 2011, 196(16): 7048-7055.
[6] Guo Y S, Zhang F, Yang J, et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries[J]. Energy & Environmental Science, 2012, 5(10): 9100-9106.
[7] Khoo T, Howlett P C, Tsagouria M, et al. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries[J]. Electrochimica Acta, 2011, 58: 583-588.
[8] Amir N, Vestfrid Y, Chusid O, et al. Progress in nonaqueous magnesium electrochemistry[J]. Journal of Power Sources, 2007, 174(2): 1234-1240.
[9] Kakibe T, Yoshimoto N, Egashira M, et al. Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries[J]. Electrochemistry Communications, 2010, 12(11): 1630-1633.
[10] Yoshimoto N, Matsumoto M, Egashira M, et al. Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode[J]. Journal of Power Sources, 2010, 195(7): 2096-2098.
[11] Wang F F, Guo Y S, Yang J, et al. A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries[J]. Chemical Communications, 2012, 48(87): 10763-10765.
文章导航

/