欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

纳米CoFe2O4/GNS负极制备及其电化学性能研究

  • 蔡默超 ,
  • 蔡森荣 ,
  • 郑明森 ,
  • 董全峰
展开
  • 厦门大学 固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门 361005

收稿日期: 2013-07-22

  修回日期: 2013-08-01

  网络出版日期: 2014-04-17

基金资助

国家自然科学基金项目(No. 200933005,No. 21021002)、国家973计划项目(No. 2009CB220102)、厦门市纯电动汽车重大专项(Ⅰ期)(No. 3502Z20121002)和国家基础科学人才培养基金项目(No. J1210014)资助

Preparation and Electrochemical Performances of CoFe2O4/GNS Nanocomposites as Anode Material for Lithium Ion Battery

  • CAI Mo-Chao ,
  • CAI Sen-Rong ,
  • ZHENG Ming-Sen ,
  • DONG Quan-Feng
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen 361005, Fujian, China

Received date: 2013-07-22

  Revised date: 2013-08-01

  Online published: 2014-04-17

摘要

采用溶剂热法一步合成纳米尺寸CoFe2O4/GNS复合材料(直径约为15 nm),其颗粒尺寸均一,且均匀分散于石墨烯表面. 电化学测试结果表明,该复合物电极具有良好的循环和倍率性能,500 mA·g-1电流密度下100周期循环比容量稳定在709 mAh·g-1, 容量保持率高达95.8%;2 A·g-1电流密度,其比容量仍高达482 mAh·g-1.

本文引用格式

蔡默超 , 蔡森荣 , 郑明森 , 董全峰 . 纳米CoFe2O4/GNS负极制备及其电化学性能研究[J]. 电化学, 2014 , 20(2) : 101 -104 . DOI: 10.13208/j.electrochem.130722

Abstract

The CoFe2O4/GNS was synthesized by a simple one-pot solvothermal method. The results obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that the CoFe2O4 particles with sizes of 15 nm dispersed on the surface of graphene uniformly. Electrochemical tests indicated that the CoFe2O4/GNS nanocomposite exhibited excellent cyclic stability with almost 95.8% capacity retention after 100 cycles at the current density of 500 mA·g-1 and delivered a high reversible capacity of 482 mAh·g-1 at the current density of 2 A·g-1.

参考文献

[1] Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270.
[2] Shim H W, Jin Y H, Seo S D, et al. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures[J]. ACS Nano, 2010, 5(1): 443-449.
[3] Li Z H, Zhao T P, Zhan X Y, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries[J]. Electrochimica Acta, 2010, 55(15): 4594-4598.
[4] Vidal-Abarca C, Lavela P, Tirado J L. A Fe-57 M?ssbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6978-6981.
[5] Guo X W, Lu X, Fang X P, et al. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2010, 12(6): 847-850.
[6] Cherian C T, Reddy M, Rao G S, et al. Li-cycling properties of nano-crystalline (Ni1-xZnx)Fe2O4 (0 ≤ x ≤ 1)[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1823-1832.
[7] Zhang Z L, Wang Y H, Zhang M J, et al. Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for Lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(25): 7444-7450.
[8] Wu L J, Xiao Q Z, Li Z H, et al. CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance[J]. Solid State Ionics, 2012, 215: 24-28.
[9] Vidal-Abarca C, Lavela P, Tirado J L. On the role of faradaic and capacitive contributions in the electrochemical performance of CoFe2O4 as conversion anode for Li-ion cells[J]. Solid State Ionics, 2010, 181(13/14): 616-622.
[10] Chu Y Q, Fu Z W, Qin Q Z. Cobalt ferrite thin films as anode material for lithium ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4915-4921.
[11] Lavela P, Tirado J L, Womes M, et al. Elucidation of capacity fading on CoFe2O4 conversion electrodes for lithium batteries based on Fe-57 mossbauer spectroscopy[J]. Journal of The Electrochemical Society, 2009, 156(7): A589-A594.
[12] Yang X H, Xiong W, Zhang Z. Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method[J]. Journal of Crystal Growth, 2005, 277(1/4): 467-470.
[13] Li Z H, Zhao T P, Zhan X Y, et al. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries[J]. Electrochimica Acta, 2010, 55(15): 4594-4598.
[14] Liu S Y, Xie J, Fang C C, et al. Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(37): 19738-19743.
[15] He P, Yang K, Wang W, et al. Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode[J]. Russian Journal of Electrochemistry, 2013, 49(4): 359-364.
[16] Yang S B, Sun Y, Chen L, et al. Porous iron oxide ribbons grown on graphene for high-performance lithium storage[J]. Scientific Reports, 2012, 2: 427
[17] Liu H, Du X Y, Xing X R, et al. Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries[J]. Chemical Communications, 2012, 48(6): 865-867.
文章导航

/