欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

含PyR14TFSI电解液LiMn2O4正极高温电化学性能

展开
  • 1. 郑州轻工业学院材料与化学工程学院,河南 郑州 450001;2. 河南省表界面科学重点实验室,河南 郑州 450001

收稿日期: 2013-01-10

  修回日期: 2013-03-25

  网络出版日期: 2014-02-24

基金资助

国家自然科学基金(No. 21001097)及河南省基础与前沿研究项目(No. 112300413216)资助

Electrochemical Performance of LiMn2O4 in PyR14TFSI Containing Electrolyte at 50 oC

Expand
  • 1. Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; 2. Henan Provincial Key Laboratory of Surface Interface Science, Zhengzhou 450001, China

Received date: 2013-01-10

  Revised date: 2013-03-25

  Online published: 2014-02-24

摘要

利用差示扫描量热仪(DSC)、电化学工作站、BTS电池测试系统、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线能量色散谱(EDS)等方法,研究了含离子液体N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐(PyR14TFSI)电解液性能以及LiMn2O4电极高温电化学性能. 结果表明,随着1 mol·L-1 LiPF6 EC/EMC/DMC(1:1:1,by volume)中PyR14TFSI添加量的增大,电解液的电导率逐渐增大,添加量为2.5%(by mass)时,电解液DSC曲线由89.3 oC、201 oC、224 oC三个强吸热峰变为116.6 oC和244.3 oC两个强吸热峰;50 oC下,LiMn2O4倍率性能显著提高,2C放电比容量提高16 mAh·g-1,100循环周期后容量保持率为88.3%(提高2.2%). PyR14TFSI添加有利于电极结构的稳定.

本文引用格式

王力臻*,孙新科,杨许召,张林森,张勇,张文静 . 含PyR14TFSI电解液LiMn2O4正极高温电化学性能[J]. 电化学, 2014 , 20(1) : 66 -72 . DOI: 10.13208/j.electrochem.130110

Abstract

In this work, with an aim to improve the performance of spinel lithium manganese and to reduce the safety concern of Li-ion battery system, the effects of N-methyl-N-butylpyrrolidinium bis (trifluoromethylsulfonyl) imide (PyR14TFSI) on performance of electrolyte and spinel lithium manganes are studied by using differential scanning calorimetry (DSC), BTS battery test system, electrochemical work station, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that the ionic conductivity of electrolyte is increased with the increase of PyR14TFSI concentration. When the concentration of PyR14TFSI is 2.5% (by mass), the DSC curves of the PyR14TFSI containing electrolyte are changed from three strong endothermic peaks (89.3 oC, 201 oC, 224 oC) to two strong endothermic peaks (116.6 oC, 244.3 oC). At 50 oC, the rate capability is enhanced, the discharge capacity is increased by 16 mAh·g-1, and the capacity retention is 88.3% (increased by 2.2%) after cycled for 100 times. PyR14TFSI is beneficial to the stability of the electrode structure.

参考文献

[1] Ohno H Y. Electrochemical aspects of ionic liquids[M]. New Jersey, John Wiley & Sons, Inc. 2005: 1-2.
[2] Fang S h, Tang Y f, Tai X y, et al. One ether-functionalized guanidinium ionic liquid as new electrolyte for lithium battery[J]. Journal of Power Sources, 2011, 196(3): 1433-1441.
[3] Lewandowski A P, Hollenkamp A F, Donne S W, et al. Cycling and rate performance of Li-LiFePO4 cells in mixed FSI-TFSI room temperature ionic liquids[J]. Journal of Power Sources, 2010, 195(7): 2029-2035.
[4] Boor S L, Nobuko Y m, Minato E s, et al. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries[J]. Journal of Power Sources, 2010, 195(21): 7426-7431.
[5] Kühnel R S, B?ckenfeld N, Passerini S, et al. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries[J]. Electrochimica Acta, 2011, 56(11): 4092-4099.
[6] Lee J S, Quan N D, Hwang J M, et al. Ionic liquids containing an ester group as potential electrolytes[J]. Electrochemistry Communications, 2006, 8(3): 460-464.
[7] Zhang Z X, Zhou H, Yang L, et al. Both imidazolium and aliphatic ammonium-based asymmetrical dicationic ionic liquids as potential electrolytes additives applied to lithium ion batteries[J]. Electrochimica Acta, 2008, 53(14): 4833-4838.
[8] Zheng J m, Zhu D r, Yang Y, et al. The effects of N-methyl-N-butylpyrrolidinium bis(tri?uoromethylsulfonyl)imide-based electrolyte on the electrochemical performance of high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Electrochimica Acta. 2012, 59(1): 14-22.
[9] Wu Y P (吴宇平), Zhang H P (张汉平), Wu F (吴锋), et al. Polymer lithium ion battery[M]. Beijing, Chemical Industry Press (化学工业出版社), 2007: 13.
[10] Zhang S j, Lu X m, Qing Z, et al. Ionic liquids physicochemical properties[M]. Amsterdam, Elsevier B V. 2009: 231.
[11] Perry R, Jones K, Scott W, et al. Densities, Viscosities, and conductivities of mixture of selected organic cosolvents with lewis basic alumium chloride + 1-methyl-3-ethylimidazolium chloride molten salt[J]. Journal of Chemical & Engineer Data, 1995, 40(3): 615-619.
[12] Zheng H H (郑洪河). Lithium ion battery electrolyte[M]. Beijing, Chemical Industry Press (化学工业出版社), 2007, 23-25.
[13] Zhuang Q C (庄全超), Wu S (武山), Liu W Y (刘文元). Influence of impurities in the electrolyte solutions for Li-ion batteries and the removing methods[J]. Chinese Battery Industry (电池工业), 2006, 11(1): 48-52.
[14] Yide J, Fang S H, Li Y, et al. Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery[J]. Journal of Power Sources, 2011, 196(24): 10658-10666.
[15] Huang S t (黄松涛), Kan S r (阚素荣), Chu M y (储茂友), et al. Cyclic voltammetry and electrochemical properties of LiMn2O4 and Li2CO3 modified LiMn2O4[J]. Chinese Journal of Rare Metals (稀有金属), 2006, 30(4): 448-452.
文章导航

/