欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

等离子体辅助球磨Si-C复合负极材料及其电化学性能研究

  • 陈宇龙 ,
  • 胡仁宗 ,
  • 刘辉 ,
  • 孙威 ,
  • 朱敏
展开
  • 华南理工大学 材料科学与工程学院,先进储能材料广东省重点实验室,广东 广州 510641

收稿日期: 2013-02-27

  修回日期: 2013-07-01

  网络出版日期: 2014-02-24

基金资助

国家自然科学基金项目(No. 51201065, No. 51231003)、中央高校基本科研业务费专项资金(No. 2012ZM0001)和广东省自然科学基金博士科研启动项目(No. S2012040008050)资助

Electrochemical Performance of Si-C Composites Prepared by Discharge-Plasma Assisted Milling

  • CHEN Yu-Long ,
  • HU Ren-Zong ,
  • LIU Hui ,
  • SUN Wei ,
  • ZHU Min
Expand
  • School of Materials Science and Engineering, South China University of Technology,Guangdong Key Lab of Advanced Materials for Energy Storage, Guangzhou 510640, China

Received date: 2013-02-27

  Revised date: 2013-07-01

  Online published: 2014-02-24

摘要

首次采用介质阻挡放电等离子体辅助高能两次球磨制得Si-C复合材料,其结构为微纳尺度硅颗粒均匀分散于微米级碳基体上. Si-C复合电极首周期循环放电容量为1259 mAh·g-1,20和100周期循环的容量分别为474和396 mAh·g-1. 该电极充放电曲线和交流阻抗测试的结果表明,复合材料中的硅和碳均参与锂离子嵌/脱反应,且其电荷传导阻抗明显低于纯Si.

本文引用格式

陈宇龙 , 胡仁宗 , 刘辉 , 孙威 , 朱敏 . 等离子体辅助球磨Si-C复合负极材料及其电化学性能研究[J]. 电化学, 2014 , 20(1) : 51 -55 . DOI: 10.13208/j.electrochem.130227

Abstract

Silicon-carbon (Si-C) composites, with microstructure of multi-scaled Si particles being homogenously dispersed in micro-sized carbon matrix, had been prepared by dielectric barrier discharge plasma assisted two-step milling for the first time. The Si-C composite anode had a discharge capacity of 1259 mAh·g-1 at the first cycle, while the capacity retained 474 and 396 mAh·g-1 after 20 and 100 cycles, respectively. Charge-discharge curves and AC impedance response indicated that both silicon and carbon phases in the composite anode were involved during the lithiation/delithiation reactions and the electron transport resistance in the Si-C composite anode was much lower than that in the pure Si anode.

参考文献

[1] Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials, 2009, 21(25/26): 2664-2680.
[2] Ma H, Cheng F, Chen J Y, et al. Nest-like silicon nanospheres for high-capacity lithium storage[J]. Advanced Materials, 2007, 19(22): 4067-4070.
[3] Fu Y P (傅焰鹏), Chen H X (陈慧鑫), Yang Y (杨勇), et al. Silicon nanowies as anode materials for lithium ion batteries[J]. Journal of Electrochemistry (电化学), 2009, 15(1): 56-61.
[4] Cho G B, Song M G, Bae S H, et al. Surface-modified Si thin film electrode for Li ion batteries (LiFePO4/Si) by cluster-structured Ni under layer[J]. Journal of Power Sources, 2009, 189(1): 738-742.
[5] Du L L (杜莉莉), Zhuang Q C (庄全超), Wei T (魏涛), et al. Preparation and performance of carbon-coated Si/C composites[J]. Journal of Electrochemistry (电化学), 2011, 17(2): 139-143.
[6] Yan J M (闫俊美), Huang H Z (黄惠贞), Zhang J (张静), et al. Silicides and composites materials as anodes for lithiun ion batteries[J]. Journal of Electrochemistry (电化学), 2005, 11(4): 416-419.
[7] Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chemical Communications, 2012, 48: 1201-1217.
[8] Zhu M, Dai L Y, Gu N S, et al. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 624-629.
[9] Szczech J R, Jin S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011, 4(1): 56-72.
[10] Gu P, Cai R, Zhou Y, et al. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis[J]. Electrochimica Acta, 2010, 55(12): 3876-3883.
[11] Peng B, Cheng F, Tao Z, et al. Lithium transport at silicon thin film: Barrier for high-rate capability anode[J]. The Journal of Chemical Physics, 2010, 133(3): 034701.
[12] Yang S, Song H, Chen X, et al. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2007, 52(16): 5286-5293.
文章导航

/