欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

铝合金电解加工中的钝化行为及其对加工过程的影响

  • 蒋利民 ,
  • 邓文波 ,
  • 应俊龙
展开
  • 南昌航空大学 轻合金加工国防重点学科实验室,材料科学与工程学院,江西 南昌 330063

收稿日期: 2013-01-04

  修回日期: 2013-03-04

  网络出版日期: 2014-02-24

基金资助

国家自然科学基金项目 (No. 21263017,No. 91023047) 及轻合金加工国防科技重点学科实验室基金和江西省工业支撑项目基金资助

Passivation Behavior of Aluminum Alloy during Electrochemical Machining and Its Effects on the Machining Performance

  • JIANG Li-Min ,
  • DENG Wen-Bo ,
  • YING Jun-Long
Expand
  • School of Material Science & Engineering, Nanchang Hangkong University, National Defense Key Laboratory of Light Alloys Processing Science and Technology, Nanchang 330063, China

Received date: 2013-01-04

  Revised date: 2013-03-04

  Online published: 2014-02-24

摘要

本文研究与分析了铝合金电解加工过程的钝化行为,探讨了加工电压、电流密度、加工间隙及电解液成分等因素对电解加工性能的影响. 研究表明,在试验温度(23 ± 1)oC下,铝合金在NaNO3和NaF复合电解液体系(钝化电解液)存在钝化现象,钝化降低了电解加工的电流效率,并使电流效率随电流密度发生较大变化. 同时,钝化也使间隙特征曲线负移. 而在相同浓度NaCl和NaF复合电解液体系(活化电解液)电解加工,可在很宽的电位范围内保持活性溶解. 在钝化电解液中,电解加工表面更加平整.

本文引用格式

蒋利民 , 邓文波 , 应俊龙 . 铝合金电解加工中的钝化行为及其对加工过程的影响[J]. 电化学, 2014 , 20(1) : 28 -32 . DOI: 10.13208/j.electrochem.130104

Abstract

The passivation behavior of aluminum alloy during electrochemical machining was investigated and discussed. The effects of processing voltage, current density, space of electrodes and electrolyte composition on electrochemical machining performance were explored. The results indicate that the electrochemical machining aluminum alloy in the composite electrolyte system containing NaNO3 and NaF existed passivation phenomenon. Passivation action decreaseed the current efficiency and made it varied greatly with the current density. Also the passivation shifted the interspace characteristic curve of electrode notably to a negative direction. There was not passivation phenomenon in the composite electrolyte system containing the same concentrations of NaCl and NaF for the electrochemical machining of aluminum alloy. It kept active dissolution in a wide range of potential. More uniform machining surface could be obtained in passive electrolyte.

参考文献

[1] Wu J M (吴建民), Xu J W (徐家文), Wu R (吴锐). Investigation of technique property of aluminum alloy electrochemical machining[J]. Journal of Material Engineering (材料工程), 2008, (8): 61-63.
[2] Zhao C X (赵长喜), Li J X (李继霞). The manufacturing technology for whole wall-plate structures of aircrafts[J]. Aerospace Manufacturing Technology (航天制造技术), 2006, (4): 44-48.
[3] Xu J W, Yun N Z, Tang Y X, et al. The modeling of NC-electrochemical contour evolution machining using a rotary tool-cathode[J]. Journal of Materials Processing Technology, 2005, 159(2): 272-277.
[4] Damme S Van, Nelissen G, Van Den B Bossch E, et al. Numerical model for predicting the efficiency behavior during pulsed electrochemical machining of steel in NaNO3[J]. Journal of Applied Electrochemistry, 2006, 36(1):1-10.
[5] Bejar M A, Gutierrez F. On the determination of current efficiency in electrochemical machining with a variable gap[J]. Journal of Materials Processing Technology, 1993, 37(2): 691-699.
[6] Haisch T, Mittemeijer E J, Schultze J W. High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution[J]. Journal of Applied Electrochemistry, 2004, 34(10): 997-1005.
[7] Wang M H, Zhu D. Simulation of fabrication for gas turbine blade turbulated cooling hole in ECM based on FEM[J]. Journal of Materials Processing Technology, 2009, 209(4): 1747-1751.
[8] Li Z Y (李志永), Zhu D (朱荻). Investigation of cathode designation and technique based on electric field and flow field characteristics for blade electrochemical machining[J]. China Mechanical Engineering (中国机械工程), 2006, 17(14): 1463-1466.
[9] Wei C J, Xu K Z, Ni J, et al. A finite element based model for electrochemical discharge machining in discharge regime[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(9/12): 987-995.
[10] Xu Z Y (徐正扬), Zhu D (朱荻), Shi X C (史先传). The optimization and test of flowing manner of electrolyte for electrochemical machining of engine blades[J]. Journal of Southeast University(Natural Science Edition) (东南大学学报(自然科学版)), 2008, 38(13): 434-438.
[11] Wu J M (吴建民), Xu J W (徐家文). Numeral simulation of 3D flow field for numeral controlling electrochemical machining of whole blade wheel[J]. China Mechanical Engineering (中国机械工程), 2009, 20(7): 780-783.
[12] Jiang L M (蒋利民), Huang X M (黄选民), Tian Z Q (田中群), et al. Investigation of microstructure machining on aluminum surface by confined etchant layer technique[J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2006, 27(8): 1540-1544.
[13] Jiang L M (蒋利民), Cheng Z Y (程泽宇), Du N (杜楠), et al. Electrochemical machining of microstructure array on magnesium alloy surface[J]. Acta Physico-Chimica Sinica (物理化学学报), 2008, 24(7): 1307-1312.
文章导航

/