[1] Wang Z H, Xiao S F, Chen Y. ?-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine[J]. Journal of Electroanalytical Chemistry, 2006, 589(2): 237-242.[2] Brett A M O, Matysik F M. Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 1997, 429(1): 95-99. [3] Wang W P, Zhou L, Wang S M. Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection[J]. Talanta, 2007, 74(4): 1050-1055.[4] Todd B, Zhao J, Fleet G. HPLC measurement of guanine for the determination of nucleic acid (RNA) in yeasts[J]. Journal of Microbiology Methods, 1995, 22(1): 1-10.[5] Xu D K, Hua L, Chen H Y. Determination of purine bases by capillary zone electrophoresis with wall-jet amperometric detection[J]. Analytical Chimica Acta, 1996, 335(1/2): 95-101.[6] Tang C, Yogeswaran U, Chen S M. Simultaneous determination of adenine, guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film[J]. Analytical Chimica Acta, 2009, 636(1): 19-27. [7] Wang J. Electrochemical nucleic acid biosensors[J]. Analytical Chimica Acta, 2002, 469(1): 63-71.[8] Fan Y, Huang K J, Niu D J, et al. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine[J]. Electrochimica Acta, 2011, 56(5): 4685-4690.[9] Shen Q, Wang X M. Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode[J]. Journal of Electroanalytical Chemistry, 2009, 632(1/2) 149-153.[10] Yin H S, Zhou Y L, Ma Q, et al. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination[J]. Process Biochemistry, 2010, 45(10): 1707-1712.[11] Ferancová A, Rengaraj S, Kim Y, et al. Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation[J]. Biosensors and Bioelectronics, 2010, 26(2): 314-320.[12] Jang J W, Lee C E, Lyu S C, et al. Nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes[J]. Applied Physical Letter, 2004, 84(15): 2877-2879. [13] Lao J Y, Li W Z, Wen J G, et al. Boron carbide nanolumps on carbon nanotubes[J]. Applied Physical Letter, 2002, 80(3): 500-502.[14] Deng C Y, Chen J H, Wang M D, et al. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode[J]. Biosensors and Bioelectronics, 2009, 24(7): 2091-2094.[15] Deng C Y, Chen J H, Chen X L, et al. Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH[J]. Electrochemistry Communications, 2008, 10, 907-909.[16] Chen X L, Chen J H, Deng C Y, et al. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode[J]. Talanta, 2008, 76(4): 763-767.[17] Deng C Y, Chen J H, Chen X L, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J]. Biosensors and Bioelectronics, 2008, 23(8): 1272-1277.[18] Han W Q, Bando Y, Kurashima K J, et al. Boron-doped carbon nanotubes prepared through a substitution reaction[J]. Chemical Physical Letter, 1999, 299(5): 368-373.[19] Davidson J N. The biochemistry of the nucleic acids[M]. 7th ed. Norfolk: Cox & Nyman, 1972. |