[1] |
Caldeira K, Wickett M E . Anthropogenic carbon and ocean pH[J]. Nature, 2003,425(6956):365.
doi: 10.1038/425365a
URL
pmid: 14508477
|
[2] |
White J W C, Ciais P, Figge R A , et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat[J]. Nature, 1994,367(6459):153-156.
|
[3] |
Chu S, Majumdar A . Opportunities and challenges for a sustainable energy future[J]. Nature, 2012,488(7411):294-303.
|
[4] |
Obama B . The irreversible momentum of clean energy[J]. Science, 2017,355(6321):126-129.
|
[5] |
Zhang X R( 张旭锐), Shao X L( 邵晓琳), Yi J( 易金 ), et al. Statuses, Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry( 电化学), 2019,25(4):413-425.
|
[6] |
Wang L M, Chen W L, Zhang D D , et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019,48(21):5310-5349.
|
[7] |
Song R B, Zhu W, Fu J , et al. Electrode materials engineering in electrocatalytic CO2 reduction: Energy input and conversion efficiency[J]. Advanced Materials, 2019,32(27):1903796.
|
[8] |
Askgaard T S, Norskov J K, Ovesen C V , et al. A kinetic model of methanol synjournal[J]. Journal of Catalysis, 1995,156(2):229-242.
|
[9] |
Iglesias M L, de Vries C, Claeys M , et al. Chemical energy storage in gaseous hydrocarbons via iron Fischer-Tropsch synjournal from H2/CO2 Kinetics, selectivity and process considerations[J]. Catalysis Today, 2015,242:184-192.
|
[10] |
Liu J J, Peng H G, Liu W M , et al. Sn modification on Ni/Al2O3: Designing potent coke-resistant catalysts for methane dry reforming[J]. Chemcatchem, 2014,6(7):2095-2104.
|
[11] |
Birdja Y Y, Pérez-Gallent E, Figueiredo M C , et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
|
[12] |
Zhou W, Cheng K, Kang J C , et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019,48(12):3193-3228.
|
[13] |
Liu M, Pang Y J, Zhang B , et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016,537(7620):382-386.
|
[14] |
Bai X F, Chen W, Zhao C C , et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017,56(40):12219-12223.
|
[15] |
Gao S, Lin Y, Jiao X C , et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016,529(7584):68-71.
doi: 10.1038/nature16455
URL
pmid: 26738592
|
[16] |
Yang F( 杨帆), Deng P L( 邓培林), Han Y J( 韩优嘉 ), et al. Copper-based compounds for electrochemical reduction of carbon dioxide[J]. Journal of Electrochemistry( 电化学), 2019,25(4):426-444.
|
[17] |
Lim D H, Jo J H, Shin D Y , et al. Carbon dioxide conversion into hydrocarbon fuels on defective graphene supported Cu nanoparticles from first principles[J]. Nanoscale, 2014,6(10):5087-5092.
|
[18] |
Keerthiga G, Viswanathan B, Chetty R . Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity[J]. Catalysis Today, 2015,245:68-73.
|
[19] |
Chen C S, Handoko A D, Wan J H , et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals[J]. Catalysis Science & Technology, 2015,5(1):161-168.
|
[20] |
Lei W( 雷文), Xiao W P( 肖卫平), Wang D L( 王得丽 ), et al. Recent progress in copper-based catalysts for electrochemical CO2 reduction[J]. Journal of Electrochemistry( 电化学), 2019,25(4):455-466.
|
[21] |
Hori Y, Kikuchi K, Suzuki S . Production of CO and CH4 in electrochemical reduction of CO2 at metal-electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985,14:1695-1698.
|
[22] |
Hori Y, Murata A, Takahashi R . Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989,85(8):2309-2326.
|
[23] |
Lv J J, Jouny M, Luc W , et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018,30(49):1803111.
|
[24] |
Garza A J, Bell A T, Head-Gordon M, Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catalysis, 2018,8(2):1490-1499.
|
[25] |
Ren S X, Joulie D, Salvatore D , et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
doi: 10.1126/science.aax4608
URL
pmid: 31346062
|
[26] |
Salvatore D A, Weekes D M, He J , et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154.
|
[27] |
Weng L C, Bell A T, Weber A Z . Modeling gas-diffusion electrodes for CO2 reduction[J]. Physical Chemistry Chemical Physics, 2018,20(25):16973-16984.
doi: 10.1039/c8cp01319e
URL
pmid: 29900441
|
[28] |
Dinh C T, Burdyny T, Kibria M G , et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
|
[29] |
Mistry H, Varela A S, Bonifacio C S , et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016,7:12123.
doi: 10.1038/ncomms12123
URL
pmid: 27356485
|
[30] |
Reske R, Mistry H, Behafarid F , et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles[J]. Journal of the American Chemical Society, 2014,136(19):6978-6986.
doi: 10.1021/ja500328k
URL
pmid: 24746172
|
[31] |
Birdja Y Y, Pérez-Gallent E, Figueiredo M C , et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
|
[32] |
Spurgeon J M, Kumar B . A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products[J]. Energy & Environmental Science, 2018,11(6), 1536-1551.
|
[33] |
Min X, Kanan M W . Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015,137(14):4701-4708.
doi: 10.1021/ja511890h
URL
pmid: 25812119
|
[34] |
Gao D F, Scholten F, Roldan Cuenya B . Improved CO2 Electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017,7(8):5112-5120.
|
[35] |
Varela A S, Ju W, Reier T , et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catalysis, 2016,6(4):2136-2144.
|
[36] |
Irina V C, Sathish P . Activation of CO2 at the electrodeelectrolyte interface by a co-adsorbed cation and an electric field[J]. Physical Chemistry Chemical Physics, 2019,21(17), 8797-8807.
doi: 10.1039/c8cp07807f
URL
pmid: 30968884
|
[37] |
Yoon Y, Hall A S, Surendranath Y . Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels[J]. Angewandte Chemie International Edition. 2016,55(49):15282-15286.
doi: 10.1002/anie.201607942
URL
pmid: 27862743
|
[38] |
Zhu C Q, Wang Q N, Wu C . Rapid and scalable synjournal of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate[J]. Journal of CO2 Utilization, 2020,36:96-104.
|
[39] |
Singh MR, Clark EL, Bell AT . Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide[J]. Physical Chemistry Che-micalPhysics, 2015,17(29), 18924-18936.
|
[40] |
Kuhl K P, Cave E R, Abram D N , et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012,5(5):7050-7059.
|
[41] |
Zhuang T T, Liang Z Q, Seifitokaldani A , et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018,1(6):421-428.
|
[42] |
Gao S, Sun Z T, Liu W , et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017,8:14503.
doi: 10.1038/ncomms14503
URL
pmid: 28220847
|
[43] |
Zhao C N, Dai X Y, Yao T , et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society, 2017,139(24):8078-8081.
doi: 10.1021/jacs.7b02736
URL
pmid: 28595012
|
[44] |
Dunwell M, Lu Q, Heyes J M , et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017,139(10):3774-3783.
doi: 10.1021/jacs.6b13287
URL
pmid: 28211683
|
[45] |
Bitar Z, Fecant A, Trela-Baudot E , et al. Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes-comparison with indium foil[J]. Applied Catalysis B - Environmental, 2016,189:172-180.
|
[46] |
Kim B, Hillman F, Ariyoshi M , et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016,312:192-198.
|
[47] |
Li F W, Thevenon A, Rosas-Hernandez A , et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2019,577(7791):509-513.
doi: 10.1038/s41586-019-1782-2
URL
pmid: 31747679
|
[48] |
Singh M R, Kwon Y, Lum Y , et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
doi: 10.1021/jacs.6b07612
URL
pmid: 27626299
|
[49] |
Li Q Y, Shi F, Shen F X , et al. Electrochemical reduction of CO2 into CO in N-methyl pyrrolidone/tetrabutylammonium perchlorate in two-compartment electrolysis cell[J]. Journal of Electroanalytical Chemistry, 2016,785:229-134.
|