[1] E. Serrano,G. Rus,J. García-Martínez. Nanotechnology for sustainable energy[J]. Renewable &Sustainable Energy Reviews, 2009, 13(9): 2373-2384.
[2] Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2014, (0)
[3] Michael Gratzel. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842.
[4] Michael D. McGehee. Perovskite solar cells: Continuing to soar[J]. Nature Materials, 2014, 13(9): 845-846.
[5] Gary Hodes,David Cahen. Photovoltaics: Perovskite cells roll forward[J]. Nature Photonics, 2014, 8(2): 87-88.
[6] Martin A. Green,Thomas Bein. PHOTOVOLTAICS Perovskite cells charge forward[J]. Nature Materials, 2015, 14(6): 559-561.
[7] Nam-Gyu Park. PEROVSKITE SOLAR CELLS Switchable photovoltaics[J]. Nature Materials, 2015, 14(2): 140-141.
[8] Martin A. Green,Anita Ho-Baillie,Henry J. Snaith. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.
[9] Gary Hodes. Perovskite-Based Solar Cells[J]. Science, 2013, 342(6156): 317-318.
[10] Akihiro Kojima,Kenjiro Teshima,Yasuo Shirai,et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[11] Best research-cell efficiencies NREL (2016)[J]. Best research-cell efficiencies NREL (2016): www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[12] Kwan Wee Tan,David T. Moore,Michael Saliba,et al. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells[J]. ACS Nano, 2014, 8(5): 4730-4739.
[13] Yehao Deng,Edwin Peng,Yuchuan Shao,et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5): 1544-1550.
[14] Chunhung Law,Lukas Miseikis,Stiochko Dimitrov,et al. Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns[J]. Advanced Materials, 2014, 26(36): 6268-6273.
[15] Byung-wook Park,Bertrand Philippe,Torbjorn Gustafsson,et al. Enhanced Crystallinity in Organic-Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder-Order Phase Transition[J]. Chemistry of Materials, 2014, 26(15): 4466-4471.
[16] Jeong-Hyeok Im,Jingshan Luo,Marius Franckevicius,et al. Nanowire Perovskite Solar Cell[J]. Nano Letters, 2015, 15(3): 2120-2126.
[17] Natalia Yantara,Dharani Sabba,Fang Yanan,et al. Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition[J]. Chemical Communications, 2015, 51(22): 4603-4606.
[18] Wallace CH Choy. Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells[J]. ACS nano, 2015, 9(1): 639-646.
[19] Dongqin Bi,Ahmed M El-Zohry,Anders Hagfeldt,et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J]. ACS Photonics, 2015, 2: 589-594.
[20] Taiyang Zhang,Mengjin Yang,Yixin Zhao,et al. Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion[J]. Nano Letters, 2015, 15(6): 3959-63.
[21] Bing Cai,Yedi Xing,Zhou Yang,et al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy & Environmental Science, 2013, 6(5): 1480-1485.
[22] Tomas Leijtens,Giles E. Eperon,Sandeep Pathak,et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885.
[23] Thomas Moehl,Jeong Hyeok Im,Yong Hui Lee,et al. Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3931-3936.
[24] Ajay Kumar Jena,Hsin-Wei Chen,Atsushi Kogo,et al. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells[J]. Acs Applied Materials & Interfaces, 2015, 7(18): 9817-9823.
[25] Belen Suarez,Victoria Gonzalez-Pedro,Teresa S. Ripolles,et al. Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1628-1635.
[26] Dongqin Bi,Soo-Jin Moon,Leif Haggman,et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. Rsc Advances, 2013, 3(41): 18762-18766.
[27] Junyan Xiao,Jiangjian Shi,Huibiao Liu,et al. Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material[J]. Advanced Energy Materials, 2015, 5(8): 1401943.
[28] Jin Hyuck Heo,Sang Hyuk Im,Jun Hong Noh,et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 487-492.
[29] Agnese Abrusci,Samuel D. Stranks,Pablo Docampo,et al. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers[J]. Nano Letters, 2013, 13(7): 3124-3128.
[30] Jun-Yuan Jeng,Yi-Fang Chiang,Mu-Huan Lee,et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[31] Chaoyang Kuang,Gang Tang,Tonggang Jiu,et al. Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells[J]. Nano Letters, 2015, 15(4): 2756-2762.
[32] Nevena Marinova,Wolfgang Tress,Robin Humphry-Baker,et al. Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation[J]. ACS nano, 2015, 9(4): 4200-4209.
[33] Hamed Azimi,Tayebeh Ameri,Hong Zhang,et al. A Universal Interface Layer Based on an Amine‐Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells[J]. Advanced Energy Materials, 2015, 5(8): 1401692.
[34] Hui-Seon Kim,Chang-Ryul Lee,Jeong-Hyeok Im,et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2: 591-598.
[35] Mingzhen Liu,Michael B. Johnston,Henry J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[36] Shaowei Shi,Yongfang Li,Xiaoyu Li,et al. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites[J]. Materials Horizons, 2015, 2,378-405
[37] Woon Seok Yang,Jun Hong Noh,Nam Joong Jeon,et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[38] Yaoming Xiao,Gaoyi Han,Yanping Li,et al. Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(39): 16531-16537.
[39] Yaoming Xiao,Gaoyi Han,Yunzhen Chang,et al. Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells[J]. Journal of Power Sources, 2015, 286: 118-123.
[40] Peng Qin,Soichiro Tanaka,Seigo Ito,et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5
[41] Francesco Di Giacomo,Valerio Zardetto,Alessandra D'Epifanio,et al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808.
[42] Yongzhen Wu,Xudong Yang,Han Chen,et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 052301.
[43] Qianqian Gao,Songwang Yang,Lei Lei,et al. An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance[J]. Chemistry Letters, 2015, 44(5): 624-626.
[44] Sang Do Sung,Min Soo Kang,In Taek Choi,et al. 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials[J]. Chemical Communications, 2014, 50(91): 14161-14163.
[45] Thirumal Krishnamoorthy,Fu Kunwu,Pablo P. Boix,et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(18): 6305-6309.
[46] Kwangseok Do,Hyeju Choi,Kimin Lim,et al. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J]. Chemical Communications, 2014, 50(75): 10971-10974.
[47] Peng Qin,Nicolas Tetreault,M. Ibrahim Dar,et al. A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2014, 5(2): 1400980.
[48] Zonglong Zhu,Yang Bai,Harrison Ka Hin Lee,et al. Polyfluorene Derivatives are High-Performance Organic Hole-Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells[J]. Advanced Functional Materials, 2014, 24(46): 7357-7365.
[49] Nianqing Fu,Chun Huang,Yan Liu,et al. Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells[J]. ACS Applied Material & Interfaces, 2015, 7(34): 19431-19438.
[50] Hui-Seon Kim,Jin-Wook Lee,Natalia Yantara,et al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417.
[51] Jianhang Qiu,Yongcai Qiu,Keyou Yan,et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays[J]. Nanoscale, 2013, 5(8): 3245-3248.
[52] Qinglong Jiang,Xia Sheng,Yingxuan Li,et al. Rutile TiO2 nanowire-based perovskite solar cells[J]. Chemical Communications, 2014, 50(94): 14720-14723.
[53] Zhong D Cai B, Yang Z, Huang B, Miao S, Zhang W-H, Qiu J, Li C. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733.
[54] Azhar Fakharuddin,Francesco Di Giacomo,Irfan Ahmed,et al. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells[J]. Journal of Power Sources, 2015, 283: 61-67.
[55] Sawanta S. Mali,Chang Su Shim,Hui Kyung Park,et al. Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells[J]. Chemical Materials, 2015, 27(5): 1541-1551.
[56] Cai B Zhong D, Wang X, et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418.
[57] Bing Cai,Dong Zhong,Zhou Yang,et al. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733.
[58] Xianfeng Gao,Jianyang Li,Joel Baker,et al. Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films[J]. Chemical Communications, 2014, 50(48): 6368-6371.
[59] Xiaoyan Wang,Zhen Li,Wenjing Xu,et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode[J]. Nano Energy, 2015, 11: 728-735.
[60] Sabba Dharani,Hemant Kumar Mulmudi,Natalia Yantara,et al. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell[J]. Nanoscale, 2014, 6(3): 1675-1679.
[61] Dong Zhong,Bing Cai,Xiuli Wang,et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418.
[62] Yaoguang Rong,Zhiliang Ku,Anyi Mei,et al. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2160-2164.
[63] M. Ibrahim Dar,F. Javier Ramos,Zhaosheng Xue,et al. Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic-Inorganic Lead Iodide Perovskite Solar Cell[J]. Chemistry of Materials, 2014, 26(16): 4675-4678.
[64] Jin-Wook Lee,Seung Hee Lee,Hyun-Seok Ko,et al. Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI 3 perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 9179-9186.
[65] Wu‐Qiang Wu,Fuzhi Huang,Dehong Chen,et al. Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole‐Blocking and Efficient Light‐Harvesting for High‐Performance Mesoscopic Perovskite Solar Cells[J]. Advanced Functinal Materials, 2015, 25: 3264-3272.
[66] Hongxia Sun,Peng Ruan,Zhongqiu Bao,et al. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells[J]. Solid State Sciences, 2015, 40: 60-66.
[67] Khalid Mahmood,Bhabani Sankar Swain,Aram Amassian. Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three-Dimensional TiO2 Electron Transporting Materials[J]. Advanced Materials, 2015, 27(18): 2859-2865.
[68] Y. Z. Wu,X. D. Yang,H. Chen,et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 4. |