欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2017, Vol. 23 ›› Issue (1): 21-27.  doi: 10.13208/j.electrochem.160412

• 研究论文 • 上一篇    下一篇

Sn掺杂对氧空位型α-Fe2O3纳米颗粒光解水性能的影响

王祖华1,钮东方1,李辉成1,杜荣斌2,徐衡2,张新胜1*   

  1. 1.华东理工大学化学工程联合国家重点实验室 上海 200237; 2.石油化工新材料协同创新中心 安徽 安庆 246011
  • 收稿日期:2016-04-12 修回日期:2016-05-06 出版日期:2017-02-28 发布日期:2016-05-18
  • 通讯作者: 张新胜 E-mail:xszhang@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21303053)和化学工程联合国家重点实验室开放基金(SKLChE-14C02)资助

Sn-Doped α-Fe2O3 Photocatalyst containing Oxygen Vacancy for Water-splitting

Wang Zu-hua1,  Niu Dong-fang1,  Li Hui-cheng1,  Du Rong-bin2,  XU Heng 2,  Zhang Xin-sheng1*   

  1. 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, 2. Collaborative Innovation Center for Petrochemical New Materials, Anqing 246011, Anhui
  • Received:2016-04-12 Revised:2016-05-06 Published:2017-02-28 Online:2016-05-18
  • Contact: Zhang Xin-sheng E-mail:xszhang@ecust.edu.cn

摘要:

在退火前未抽真空条件下,采用滴涂法在常压氮气氛围中退火制备了含氧空位的α-Fe2O3纳米颗粒. 通过在空气和氮气氛围中退火和向前驱体溶液直接加入SnCl4制备α-Fe2O3的方法研究了Sn掺杂对氧空位型α-Fe2O3纳米颗粒光催化性能的影响. 结果表明,氮气氛围中退火Sn掺杂得到的α-Fe2O3在1.23V vs. RHE时的电流密度分别是氮气氛围中退火未掺杂α-Fe2O3的35倍和空气氛围中退火Sn掺杂α-Fe2O3的15倍,氮气氛围中退火和掺杂被证明是获得高催化性能必不可少的条件. Mott-Schottky曲线和交流阻抗谱表明,掺杂和氧空位能增大催化剂的载流子浓度的电导率. 在牺牲剂溶液中测试发现,Sn掺杂导致材料的表面反应速率提高是催化剂活性的重要影响因素.

关键词: &alpha, -Fe2O3;Sn掺杂;氧空位;表面反应速率

Abstract:

The α-Fe2O3 nanoparticles containing oxygen vacancies were synthesized in atmospheric N2 by dip-dropping method without a high vacuum employed before annealing. The influences of annealing atmosphere and Sn-doping on the photocatalytic performance of α-Fe2O3 nanoparticles were studied by annealing the photocatalyst in N2 or air and adding SnCl4 to the precursor directly. The results showed that the current density of Sn-doping α-Fe2O3 annealed in N2 at 550 °C and 1.23 V (vs. RHE) was 35 times greater than that of pristine α-Fe2O3 annealed in N2 at 550 °C and 15 times greater than that of Sn-doping α-Fe2O3 annealed in air at 550 °C, which indicated that both Sn-doping and annealing in N2 were indispensible to obtain a good performance for α-Fe2O3 nanoparticles. Mott-Schottky curves and electrochemical impedance spectroscopic data proved that both Sn-doping and oxygen vacancy could lead to the increase of the donors concentration and conductivity, which resulted in the enhanced performance of α-Fe2O3 nanoparticles. The photocatalytic performance tested in the electrolyte containing sacrifice solvent confirmed that the Sn-doping could facilitate the surface reaction, which was another key factor contributed to the enhanced performance of α-Fe2O3 nanoparticles.

Key words: α-Fe2O3 photocatalyst, oxygen vacancy, Sn doping, surface reaction rate

中图分类号: