1. Zhang Q X, Zhang Y D, Huang S Q, et al. Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs) [J].Electrochemistry Communications, 2010,12(2):327-330.
2. Jun H K, Careem M A, Arof A K. Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers [J]. Renewable and Sustainable Energy Reviews, 2013,22:148-167.
3. Cui J B, Li Y J, Liu L, et al. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions [J]. Nano Letters, 2015,15(10):6295-6301.
4. Sudhagar P, Song T, Lee D H, et al. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures [J].Journal of Physical Chemistry Letters, 2011,2(16):1984-1990.
5. Rühle S, Shalom M, Zaban A. Quantum-Dot-Sensitized Solar Cells [J]. Chemphyschem, 2010,11(11):2290-2304.
6. Guo W X, Chen C, Ye M D, et al. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells [J]. Nanoscale, 2014,6(7):3656-3663.
7. Ye M D, Chen C, Lv M Q, et al. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells [J]. Nanoscale, 2013,5(14):6577-6583.
8. Li L L, Zhu P N, Peng S J, et al. Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells [J]. Journal of Physical Chemistry C, 2014,118(30):16526-16535.
9. Tian J J, Zhang Q F, Zhang L L, et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells [J]. Nanoscale, 2013,5(3):936-943.
10. Wang H B, Kubo T, Nakazaki J, et al. PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region [J]. Journal of Physical Chemistry Letters, 2013,4(15):2455-2460.
11. Wu M X, Lin X, Wang Y D, et al. Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(39):19638-19656.
12. Jiang Y, Yu B B, Liu J, et al. Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes [J]. Nano Letters, 2015,15(5):3088-3095.
13. Ye M D, Chen C, Zhang N, et al. Quantum-Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes [J]. Advanced Energy Materials, 2014:201301564.
14. Jiao S H, Xu L F, Jiang K, et al. Well‐Defined Non‐spherical Copper Sulfide Mesocages with Single‐Crystalline Shells by Shape‐Controlled Cu2O Crystal Templating [J]. Advanced Materials, 2006,18(9):1174-1177.
15. Nan Z D, Wang X Y, Zhao Z B. Formation of various morphologies of copper sulfides by a solvothermal method [J]. Journal of Crystal Growth, 2006,295(1):92-96.
16. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal T. Evolution of Hierarchical Hexagonal Stacked Plates of CuS from Liquid− Liquid Interface and its Photocatalytic Application for Oxidative Degradation of Different Dyes under Indoor Lighting [J]. Environmental Science & Technology, 2010,44(16):6313-6318.
17. Luther J M, Gao J, Lloyd M T, et al. Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell [J]. Advanced Materials, 2010,22(33):3704-3707.
18. Yu X L, Cao C B, Zhu H S, et al. Nanometer‐Sized Copper Sulfide Hollow Spheres with Strong Optical‐Limiting Properties [J]. Advanced Functional Materials, 2007,17(8):1397-1401.
19. Gao J N, Li Q S, Zhao H B, et al. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties [J]. Chemistry of Materials, 2008,20(19):6263-6269.
20. Ye M D, Xin X K, Lin C J, et al. High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes [J]. Nano Letters, 2011,11(8):3214-3220.
21. Li T L, Lee Y L, Teng H. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure [J]. Energy & Environmental Science, 2012,5(1):5315-5324.
22. Yang Z, Chen C Y, Liu C W, et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chemical Communications, 2010,46(30):5485-5487.
23. Grozdanov I, Najdoski M. Optical and electrical properties of copper sulfide films of variable composition [J]. Journal of Solid State Chemistry, 1995,114(2):469-475.
24. Chen C, Ye M D, Zhang N, et al. Preparation of hollow Co9S8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(12):6311-6314.
25. Guo W X, Chen C, Ye M D, et al. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells [J]. Nanoscale, 2014,6(7):3656-3663.
26. Chen C, Ye M D, Lv M Q, et al. Ultralong Rutile TiO2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dot-sensitized Solar Cells [J]. Electrochimica Acta 2014,121:175-182.
27. Kumar P, Gusain M, Nagarajan R. Synthesis of Cu1. 8S and CuS from Copper-Thiourea Containing Precursors; Anionic (Cl−, NO3−, SO42−) Influence on the Product Stoichiometry [J]. Inorganic Chemistry, 2011,50(7):3065-3070.
28. Ye M D, Wen X R, Zhang N, et al. In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells [J]. Journal of Materials Chemistry A, 2015,3(18):9595-9600.
29. Guan X F, Huang S Q, Zhang Q X, et al. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays [J]. Nanotechnology, 2011,22(46):465402. |