[1] Bruckenstein S, Gadde R R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J]. Journal of the American Chemical Society, 1971, 93(3): 793-794.[2] Wolter O, Heitbaum J. Differential electrochemical mass-spectroscopy (Dems) - A new method for the study of electrode processes[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(1): 2-6.[3] Hambitzer G, Heitbaum J. Electrochemical thermospray mass spectrometry[J]. Analytical Chemistry, 1986, 58(6): 1067-1070. [4] Deng H, Van Berkel G J. Electrochemical polymerization of aniline investigated using on-line electrochemistry/electrospray mass spectrometry[J]. Analytical Chemistry, 1999, 71(19): 4284-4293.[5] Arakawa R, Abura T, Fukuo T, et al. Analysis of electrolysis reactions of metal complexes using on-line electrospray ionization mass spectrometry with a compact electrolytic flow-through cell[J]. Bulletin of the Chemical Society of Japan, 1999, 72(7): 1519-1523.[6] Johnson K A, Shira B A, Anderson J L, et al. Chemical and on-line electrochemical reduction of metalloproteins with high-resolution electrospray ionization mass spectrometry detection[J]. Analytical Chemistry, 2001, 73(4): 803-808.[7] Kertesz V, Van Berkel G J. Surface-assisted reduction of aniline oligomers, N-phenyl-1,4-phenylenediimine and thionin in atmospheric pressure chemical ionization and atmospheric pressure photoionization[J]. Journal of the American Society for Mass Spectrometry, 2002, 13(2): 109-117.[8] Barber M, Bordoli R S, Elliott G J, et al. Fast atom bombardment mass spectrometry[J]. Analytical Chemistry, 1982, 54(4): 645A-657A.[9] Pretty J R, Evans E H, Blubaugh E A, et al. Minimisation of sample matrix effects and signal enhancement for trace analytes using anodic stripping voltammetry with detection by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1990, 5(6): 437-443.[10] Mozhzhukhina N , Méndez De Leo L P , Calvo E J. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18375-18380.[11] Leskes M, Moore A J, Goward G R, et al. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26929-26939. [12] Younesi R, Hahlin M, Treskow M, et al. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES)[J]. The Journal of Physical Chemistry C, 2012, 116 (35): 18597-18604.[13] Ryan K R, Trahey L, Okasinski J S, et al. In situ synchrotron X-ray diffraction studies of lithium oxygen batteries[J]. Journal of Materials Chemistry A, 2013, 1(23): 6915-6919.[14] Frith J T, Russell A E, Garcia-Araez N, et al. An in-situ Raman study of the oxygen reduction reaction in ionic liquids[J]. Electrochemistry Communications, 2014, 46: 33-35.[15] Zhai D, Wang H, Lau K C, et al. Raman evidence for late stage disproportionation in a Li-O2 battery[J]. The Journal of Physical Chemistry Letters, 2014, 5 (15): 2705-2710.[16] Zhong L, Mitchell R R, Liu Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2[J]. Nano Letters, 2013, 13 (5): 2209-2214.[17] Zheng H, Xiao D, Li X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14 (8): 4245-4249.[18] Wen R, Hong M, Byon H R. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte[J]. Journal of the American Chemical Society, 2013, 135(29): 10870-10876.[19] Lu J, Jung H J, Lau K C, et al. Magnetism in lithium-oxygen discharge product[J]. ChemSusChem, 2013, 6(7): 1196-1202.[20] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of The Electrochemical Society, 1996, 143(1): 1-5.[21] Read J. Characterization of the lithium/oxygen organic electrolyte battery[J]. Journal of The Electrochemical Society, 2002, 149(9): A1190-A1195.[22] Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J]. Journal of The Electrochemical Society, 2003, 150(10): A1351-A1356.[23] Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047.[24] Wu Xu, Viswanathana V V, Deyu Wang, et al. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. Journal of Power Sources, 2011, 196(8): 3894-3899.[25] Xiao J, Wang D H, Wu Xu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of The Electrochemical Society, 2010, 157(4): A487-A492.[26] Wu Xu, Kang Xu, Viswanathana V V, et al. Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes[J]. Journal of Power Sources, 2011, 196(22): 9631-9639.[27] McCloskey B D, Bethune D S, Shelby R M, et al. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166.[28] Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. Journal of The Electrochemical Society, 2013, 160(4): A549-A552.[29] Jung H, Hassoun J, Park J, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4: 579-585.[30] Planes G A, Gonzalo García, Pastor E. High performance mesoporous Pt electrode for methanol electrooxidation. A DEMS study[J]. Electrochemistry Communications, 2007, 9(4): 839-844.[31] Martínez-Huerta M V, Rodríguez J L, Tsiouvaras N, et al. Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: Structural characteristics and performance for methanol electrooxidation[J]. Chemistry of Materials, 2008, 20(13): 4249-4259.[32] Tsiouvaras N, Meini S, Buchberger I, et al. A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li-O2 battery[J]. Journal of The Electrochemical Society, 2013, 160(3): A471-A477.[33] Bach H T, Meyer B A, Tuggle D G. Role of molecular diffusion in the theory of gas flow through crimped-capillary leaks[J]. Journal of Vacuum Science & Technology A, 2003, 21(3): 806.[34] Meini S, Piana M,Tsiouvaras N,et al. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(4): A45-A48.[35] Freunberger S A, Chen Y H, Drewett N E, et al. The lithium-oxygen battery with ether-based electrolytes[J]. Angewandte Chemie International edition, 2011, 50(37): 8609-8613.[36] Bryantsev V S, Giordani V, Walker W, et al. Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O2?-)[J]. Journal of Physical Chemistry A, 2011, 115(44): 12399-12409.[37] Bryantsev V S, Uddin J, Giordani V, et al. The identification of stable solvents for nonaqueous rechargeable Li-air batteries[J]. Journal of The Electrochemical Society, 2013, 160(1): A160-A171.[38] Mizuno F, Takechi K, Higashi S, et al. Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent[J]. Journal of Power Sources, 2013, 228: 47-56.[39] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.[40] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature Chemistry, 2013, 5: 489-494.[41] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.[42] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.[43] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337: 563-566.[44] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12: 1050-1056.[45] Ogasawara T, Aurélie Débart, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4): 1390-1393.[46] Beyer H, Meini S, Tsiouvaras N, et al. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries[J]. Physical Chemistry Chemical Physics, 2013, 15: 11025-11037.[47] Peng Z Q, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie International edition, 2011, 123(28): 6475-6479.[48] Meini S, Tsiouvaras N, Schwenke K U, et al. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11478-11493.[49] Gowda S R, Brunet A, Wallraff G M,et al. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(2): 276-279.[50] Meini S, Solchenbach S, Piana M, et al. The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2O2 in Li-O2 batteries[J]. Journal of The Electrochemical Society, 2014, 161 (9): A1306-A1314.[51] McCloskey B D, Valery A, Luntz A C, et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 Batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2989-2993.[52] McCloskey B D, Bethune D S, Shelby R M, et al. Limitations in rechargeability of Li-O2 batteries and possible origins[J]. Journal of Physical Chemistry Letters, 2012, 3(20): 3043-3047.[53] Imanishi N, Luntz A C, Bruce P. The lithiun air battery: Fundamentals[M]. New York: Springer, 2014: 59-60. |